Skip to main content
Log in

Dynamical instability of laminar axisymmetric flows of ideal fluid with stratification

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The instability of nonhomentropic axisymmetric flows of ideal fluid with respect to two-dimensional infinitesimal perturbations with the nonconservation of angular momentum is investigated by numerically integrating the differential equations of hydrodynamics. This problem is important in studying the dynamics of astrophysical flows as shear fluid flows around a gravitating center. A complex influence of a nonzero entropy gradient on the instability of sonic and surface gravity modes has been found. In particular, both an increase and a decrease in entropy against the effective gravity g eff causes the growth of surface gravity modes that are stable at the same parameters for a homentropic flow. At the same time, the growth rate of the sonic instability branches either monotonically increases with increasing rate of decrease in entropy against g eff or becomes zero at both negative and positive entropy gradients in the unperturbed flow. Calculations also show that growing internal gravity modes appear in the problem with free boundaries under consideration only if the flow is no longer stable with respect to axisymmetric perturbations. In addition, we show that it is improper to specify the entropy distribution in the main flow by a polytropic law with a polytropic index different from the adiabatic value, since the perturbation field does not satisfy the boundary condition at a free boundary in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. M. Blaes and W. Glatzel, Mon. Not. R. Astron. Soc. 220, 253 (1986).

    ADS  Google Scholar 

  2. L. M. Brekhovskikh and V. V. Goncharov, Introduction to Continuum Mechanics (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  3. J. Frank and J. A. Robertson, Mon. Not. R. Astron. Soc. 232, 1 (1988).

    MATH  ADS  Google Scholar 

  4. M. Y. Fujimoto, Astron. Astrophys. 176, 53 (1987).

    MATH  ADS  MathSciNet  Google Scholar 

  5. P. Ghosh and M. A. Abramowicz, Astrophys. J. 366, 221 (1991).

    Article  ADS  Google Scholar 

  6. W. Glatzel, Mon. Not. R. Astron. Soc. 225, 227 (1987a).

    MATH  ADS  MathSciNet  Google Scholar 

  7. W. Glatzel, Mon. Not. R. Astron. Soc. 228, 77 (1987b).

    MATH  ADS  Google Scholar 

  8. W. Glatzel, Mon. Not. R. Astron. Soc. 242, 338 (1990).

    ADS  MathSciNet  Google Scholar 

  9. W. Glatzel, Rev. Mod. Astron. 4, 104 (1991).

    ADS  Google Scholar 

  10. P. Goldreich, J. Goodman, and R. Narayan, Mon. Not. R. Astron. Soc. 221, 339 (1986).

    MATH  ADS  Google Scholar 

  11. T. Hanawa, Astron. Astrophys. 179, 383 (1987).

    MATH  ADS  Google Scholar 

  12. L. N. Howard, J. Fluid Mech. 10, 496 (1961).

    Article  MathSciNet  Google Scholar 

  13. M. Jaroszynski, Acta Astron. 38, 289 (1988).

    ADS  Google Scholar 

  14. H. H. Klahr and P. Bodenheimer, Astrophys. J. 582, 869 (2003).

    Article  ADS  Google Scholar 

  15. Y. Kojima, Mon. Not. R. Astron. Soc. 236, 589 (1989).

    ADS  Google Scholar 

  16. Y. Kojima, S. M. Miyama, and H. Kubotani, Mon. Not. R. Astron. Soc. 238, 753 (1989).

    ADS  Google Scholar 

  17. R. V. E. Lovelace, H. Li, S. A. Colgate, and A. F. Nelson, Astrophys. J. 513, 805 (1999).

    Article  ADS  Google Scholar 

  18. H. Li, J. M. Finn, R. V. E. Lovelace, and S. A. Colgate, Astrophys. J. 533, 1023 (2000).

    Article  ADS  Google Scholar 

  19. C. C. Lin, Q. Appl. Math. 3, 117 (1945).

    MATH  Google Scholar 

  20. J. C. B. Papaloizou and D. N. C. Lin, Ann. Rev. Astron. Astrophys. 33, 505 (1995).

    ADS  Google Scholar 

  21. J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 208, 721 (1984).

    MATH  ADS  Google Scholar 

  22. J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 213, 799 (1985).

    MATH  ADS  Google Scholar 

  23. J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 225, 267 (1987).

    MATH  ADS  Google Scholar 

  24. M. Sekiya and S. Miyama, Mon. Not. R. Astron. Soc. 234, 107 (1988).

    MATH  ADS  Google Scholar 

  25. Yu. A. Stepanyants and A. L. Fabrikant, Propagation of Waves in Shear Flows (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  26. J.-L. Tassoul, Theory of Rotating Stars (Princeton Univ. Press, Princeton, 1979; Mir, Moscow, 1982).

    Google Scholar 

  27. Yu. I. Troitskaya and A. L. Fabrikant, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 32, 1221 (1989).

    Google Scholar 

  28. V. V. Zhuravlev and N. I. Shakura, Pis’ma Astron. Zh. 33, 604 (2007a).

    Google Scholar 

  29. V. V. Zhuravlev and N. I. Shakura, Pis’ma Astron. Zh. 33 (2007b) (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zhuravlev.

Additional information

Original Russian Text © V.V. Zhuravlev, N.I. Shakura, 2007, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2007, Vol. 33, No. 11, pp. 830–845.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuravlev, V.V., Shakura, N.I. Dynamical instability of laminar axisymmetric flows of ideal fluid with stratification. Astron. Lett. 33, 740–754 (2007). https://doi.org/10.1134/S1063773707110059

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773707110059

PACS numbers

Key words

Navigation