Skip to main content
Log in

A study of the outburst development in the classical symbiotic star Z And within the colliding-winds model

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Two-dimensional gas-dynamical modeling of the mass-flow structures in binary systems is used to study the outburst development in the classical symbiotic star Z And. The stage-by-stage rise of the light during the outburst can be explained using a model with colliding winds. We suggest a scenario for the development of the outburst and study the influence of possible changes in the flow structure on the brightness of the system. The model variations of the luminosity due to the formation of a system of shocks are in good agreement with the observed brightness variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. R. Seaquist and A. R. Taylor, Astrophys. J. 349, 155 (1990).

    Article  Google Scholar 

  2. E. R. Seaquist, A. R. Taylor, and S. Button, Astrophys. J. 284, 202 (1984).

    Article  ADS  Google Scholar 

  3. T. Fernandez-Castro, A. Cassatella, A. Gimenez, et al., Astrophys. J. 324, 1016 (1988).

    Article  ADS  Google Scholar 

  4. H. Nussbaumer and M. Vogel, Astron. Ges. Abstract Ser. 4, 19 (1990).

    ADS  Google Scholar 

  5. H. Nussbaumer and M. Vogel, Astron. Astrophys. 213, 137 (1989).

    ADS  Google Scholar 

  6. H. Nussbaumer and R. Walder, Astron. Astrophys. 278, 209 (1993).

    ADS  Google Scholar 

  7. J. L. Sokoloski, S. J. Kenyon, et al., in The Physics of Cataclysmic Variables and Related Objects, Ed. by B.-T. Gansicke, K. Beuermann, and K. Reinsch (Astron. Soc. Pac., San Francisco, 2002), Astron. Soc. Pac. Conf. Proc. 261, 667 (2002).

    Google Scholar 

  8. J. L. Sokoloski, S. J. Kenyon, B. R. Espey, et al., Astrophys. J. 636, 1002 (2006).

    Article  ADS  Google Scholar 

  9. N. A. Tomov, M. T. Tomova, and R. K. Zamanov, in Symboiotic Stars Probing Stellar Evolution, Ed. by R. L. M. Corradi, J. Mikolajewska, and T. J. Mahoney (Astron. Soc. Pac., San Francisco, 2003), Astron. Soc. Pac. Conf. Ser. 303, 254 (2003).

    Google Scholar 

  10. A. Skopal, L. Errico, A. A. Vittone, et al., in Interacting Binaries: Accretion, Evolution, and Outcomes, Ed. by L. A. Antonelli, L. Burderi, F. D’Antona, et al., AIP Conf. Proc. 797, 557 (2005).

  11. L. A. Willson, G. Wallerstein, E. W. Brugel, and R. E. Stencel, Astron. Astrophys. 133, 154 (1984).

    ADS  Google Scholar 

  12. L. A. Willson, J. Salzer, G. Wallerstein, and E. Brugel, Astron. Astrophys. 133, 137 (1984).

    ADS  Google Scholar 

  13. T. Girard and L. A. Willson, Astron. Astrophys. 183, 247 (1987).

    ADS  Google Scholar 

  14. S. Kwok and D. A. Leahy, Astrophys. J. 283, 675 (1984).

    Article  ADS  Google Scholar 

  15. S. Kowk, in IAU Colloq. 103: The Symbiotic Phenomenon, Ed. by J. Mikolajewska, M. Friedjung, et al. (Kluwer, Dordrecht, 1988), Astrophys. Space Sci. Library 145, 129 (1988).

    Google Scholar 

  16. D. V. Bisikalo, A. A. Boyarchuk, O. A. Kuznetsov, et al., Astron. Zh. 71, 560 (1994) [Astron. Rep. 38, 494 (1994)].

    ADS  Google Scholar 

  17. D. V. Bisikalo, A. A. Boyarchuk, O. A. Kuznetsov, and V. M. Chechetkin, Astron. Zh. 73, 727 (1996) [Astron. Rep. 40, 662 (1996)].

    Google Scholar 

  18. D. V. Bisikalo, A. A. Boyarchuk, E. Yu. Kil’pio, and O. A. Kuznetsov, Astron. Zh. 79, 1131 (2002) [Astron. Rep. 46, 1022 (2002)].

    Google Scholar 

  19. A. Skopal, M. Vanko, T. Pribulla, et al., Contrib. Astron. Obs. Skalnate Pleso 32, 62 (2002).

    ADS  Google Scholar 

  20. A. Skopal, T. Pribulla, M. Vanko, et al., Contrib. Astron. Observ. Skalnate Pleso 34, 45 (2004).

    ADS  Google Scholar 

  21. J. L. Sokoloski, S. J. Kenyon, et al., in The Astrophysics of Cataclysmic Variables and Related Objects, Ed. by J.-M. Hameury and J.-P. Lasota (Astron. Soc. Pac., San Francisco, 2005), Astron. Soc. Pac. Conf. Ser. 330, 293 (2005).

    Google Scholar 

  22. S. J. Kenyon, The Symbiotic Stars (Cambridge Univ. Press, Cambridge, 1986).

    Google Scholar 

  23. I. Iben, Jr. and A. V. Tutukov, Astrophys. J., Suppl. Ser. 105, 145 (1996).

    Article  ADS  Google Scholar 

  24. B. Paczyński and B. Rudak, Astron. Astrophys. 82, 349 (1980).

    ADS  Google Scholar 

  25. B. Paczyński and A. Żytkow, Astrophys. J. 222, 604 (1978).

    Article  ADS  Google Scholar 

  26. E. M. Sion, M. J. Acierno, and S. Tomczyk, Astrophys. J. 230, 832 (1979).

    Article  ADS  Google Scholar 

  27. M. Y. Fujimoto, Astrophys. J. 257, 767 (1982).

    Article  ADS  Google Scholar 

  28. M. Mitsumoto, B. Jahanara, T. Matsuda, et al., Astron. Zh. 82, 990 (2005) [Astron. Rep. 49, 884 (2005)].

    Google Scholar 

  29. A. V. Tutukov and L. R. Yungel’son, Astrofizika 12, 521 (1976).

    ADS  Google Scholar 

  30. E. Yu. Kilpio, D. V. Bisikalo, A. A. Boyarchuk, and O. A. Kuznetsov, in The Astrophysics of Cataclysmic Variables and Related Objects, Ed. by J.-M. Hameury and J.-P. Lasota (Astron. Soc. Pac., San Francisco, 2005), Astron. Soc. Pac. Conf. Ser. 330, 457 (2005).

    Google Scholar 

  31. E. Yu. Kilpio, D. V. Bisikalo, A. A. Boyarchuk, and O. A. Kuznetsov, in Interacting Binaries: Accretion, Evolution, and Outcomes, Ed. by L. A. Antonelli, L. Burderi, F. D’Antona, et al., AIP Conf. Proc. 797, 573 (2005).

  32. N. A. Tomov, O. G. Taranova, and M. T. Tomova, Astron. Astrophys. 401, 669 (2003).

    Article  ADS  Google Scholar 

  33. T. Fernandez-Castro, R. Gonzales-Riestra, A. Cassatella, et al., Astrophys. J. 442, 366 (1995).

    Article  ADS  Google Scholar 

  34. D. P. Cox and E. Daltabuit, Astrophys. J. 167, 113 (1971).

    Article  ADS  Google Scholar 

  35. S. R. Pottasch, Planetary Nebulae—A Study of Late Stages of Stellar Evolution (Reidel, Dordrecht, 1984; Mir, Moscow, 1987), 335 p.

    Google Scholar 

  36. D. Proga, J. Mikolajewska, and S. J. Kenyon, Mon. Not. R. Astron. Soc. 268, 213 (1994).

    ADS  Google Scholar 

  37. J. Mikolajewska and S. J. Kenyon, Astron. J. 112, 1659 (1996).

    Article  ADS  Google Scholar 

  38. J. J. Birriel, B. R. Espey, and R. E. Schulte-Ladbeck, Astrophys. J. 507, L75 (1998).

    Article  ADS  Google Scholar 

  39. P. J. Storey and D. G. Hummer, Mon. Not. R. Astron. Soc. 272, 41 (1995).

    ADS  Google Scholar 

  40. H. M. Schmid and H. Schild, Astron. Astrophys. 327, 219 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.V. Bisikalo, A.A. Boyazchuk, E.Yu. Kilpio, N.A. Tomov, M.T. Tomova, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 9, pp. 309–320.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisikalo, D.V., Boyarchuk, A.A., Kilpio, E.Y. et al. A study of the outburst development in the classical symbiotic star Z And within the colliding-winds model. Astron. Rep. 50, 722–732 (2006). https://doi.org/10.1134/S106377290609006X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377290609006X

PACS numbers

Navigation