Skip to main content
Log in

Influence of Hydrodynamic Processes Generated by 1.94-μm Pulsed Laser Radiation on Daphnia magna Crustaceans

  • ACOUSTICS OF LIVING SYSTEMS. BIOMEDICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The hydrodynamic processes occurring in water under the action of pulsed laser radiation with a power of 20 W, wavelength of 1.94 μm, and a pulse duration of 100 ns were investigated. Such radiation leads the excitation of jet flows in water, as well as microbubbles and broadband acoustic vibrations. It was established that the main energy of these vibrations lies within the range of 10–15 kHz; they are excited according to the thermal cavitation mechanism and the regime corresponds to superintense nucleate boiling. It was shown that laser-induced hydrodynamic processes exert a pronounced biological effect on Daphnia magna crustaceans, leading to their increased fertility for acoustic doses of 35 and 350 J/m2. The experimental data and theoretical estimates show that stimulation of the reproductive function in crustaceans is due to the action of laser-induced low-intensity broadband acoustic vibrations and is not associated with temperature effects. The death of crustaceans and appearance of individuals with maldevelopments were observed for the maximum exposure (300 s). It is shown that the negative effects are related only to the effect of high-temperature microjets on Daphnias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. Kwiatkowska, J. Bennett, J. Akunna, G. M. Walker, and D. H. Bremner, Biotechnol. Adv. 29 (6), 768 (2011).

    Article  Google Scholar 

  2. Ultrasound: Its Applications in Medicine and Biology, Ed. by F. J. Fry (Elsevier, 2013), Vol. 3.

    Google Scholar 

  3. Diagnostic Ultrasound: Physics and Equipment, Ed. by P. R. Hoskins, K. Martin, and A. Thrush (Cambridge Univ. Press, Cambridge, 2010).

    Google Scholar 

  4. Therapeutic Ultrasound, Ed. by J. M. Escoffre and A. Bouakaz (Springer, 2015), Vol. 880.

    Google Scholar 

  5. K. G. Baker, V. J. Robertson, and F. A. Duck, Phys. Ther. 81 (7), 1351 (2001).

    Google Scholar 

  6. C. M. Tempany, N. J. McDannold, K. Hynynen, and F. A. Jolesz, Radiology 259 (1), 39 (2011).

    Article  Google Scholar 

  7. C. R. B. Merritt, F. W. Kremkau, and J. C. Hobbins, Ultrasound Obstet. Gynecol. 2 (5), 366 (1992).

    Article  Google Scholar 

  8. M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, Acoust. Phys. 49 (4), 369 (2003).

    Article  ADS  Google Scholar 

  9. V. B. Akopyan and Yu. A. Ershov, Foundations of Interaction between Ultrasound and Biological Objects (Bauman Moscow State Technical Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  10. W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, J. Appl. Phys. 95 (6), 2952 (2004).

    Article  ADS  Google Scholar 

  11. A. Vogel and W. Lauterborn, J. Acoust. Soc. Am. 84 (2), 719 (1988).

    Article  ADS  Google Scholar 

  12. S. F. Rastopov and A. T. Sukhodolsky, Proc. SPIE 1440, 127 (1991).

    Article  ADS  Google Scholar 

  13. V. I. Yusupov, A. N. Konovalov, V. A. Ul’yanov, and V. N. Bagratashvili, Acoust. Phys. 62 (5), 537 (2016).

    Article  ADS  Google Scholar 

  14. V. I. Yusupov, V. V. Bulanov, V. M. Chudnovskii, and V. N. Bagratashvili, Laser Phys. 24 (1), 015601 (2014).

    Article  ADS  Google Scholar 

  15. V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, Laser Phys. 20 (7), 1641 (2010).

    Article  ADS  Google Scholar 

  16. V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, Laser Phys. 21 (21), 1230 (2011).

    Article  ADS  Google Scholar 

  17. V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, in Hydrodynamics–Advanced Topics, Ed. by H. E. Schulz, A. L. A. Simoes, and R. J. Lobosco (InTech, 2011), p. 95. https://doi.org/10.13140/2.1.4838.9122

    Google Scholar 

  18. R. K. Chailakhyan, V. I. Yusupov, Yu. V. Gerasimov, P. A. Sobolev, A. Kh. Tambiev, N. N. Vorob’eva, A. P. Sviridov, and V. N. Bagratashvili, Biomeditsina 1 (2), 24 (2011).

    Google Scholar 

  19. R. K. Chailakhyan, V. I. Yusupov, A. P. Sviridov, Yu. V. Gerasimov, A. Kh. Tambiev, N. N. Vorob’eva, A. I. Kuralesova, I. L. Moskvina, and V. N. Bagratashvili, Biomed. Radioelektron., No. 2, 36 (2013).

  20. V. P. Gapontsev, V. P. Minaev, V. I. Savin, and I. E. Samartsev, Kvantovaya Elektron. 32 (11), 1003 (2002).

    Article  Google Scholar 

  21. B. I. Sandler, L. N. Sulyandziga, V. M. Chudnovskii, V. I. Yusupov, O. V. Kosareva, and V. S. Timoshenko, Trends for Therapy of Discogenic Compressive Forms of Lumbosacral Radiculitis with the Help of Paracentetic Non-Subcutaneous Laser Operations (Dal’nauka, Vladivostok, 2004) [in Russian].

    Google Scholar 

  22. V. A. Privalov, I. V. Krochek, I. A. Abushkin, I. I. Shumilin, and A. V. Lappa, Vestn. Eksp. Klin. Khir. 2 (1), 19 (2009).

    Google Scholar 

  23. D. M. M. Adema, Hydrobiologia 59 (2), 125 (1978).

    Article  Google Scholar 

  24. O. F. Filenko and I. V. Mikheeva, Foundations of Aquatic Toxicology (Kolos, Moscow, 2007) [in Russian].

    Google Scholar 

  25. E. A. Osipova, V. V. Krylov, and V. I. Yusupov, Zh. Sib. Fed. Univ., Biol. 4 (3), 301 (2011).

    Google Scholar 

  26. O. V. Vorob’yeva, O. F. Filenko, E. F. Isakova, N. N. Vorobieva, A. O. Rybaltovskii, V. I. Yusupov, and V. N. Bagratashvili, Laser Phys. Lett. 12 (11) (2015).

  27. O. V. Vorob’eva, O. F. Filenko, E. F. Isakova, V. I. Yusupov, K. V. Zotov, and V. N. Bagratashvili, Biophysics (Moscow) 61 (6), 996 (2016).

    Article  Google Scholar 

  28. N. Denslow, J. K. Colbourne, D. Dix, J. H. Freedman, C. C. Helbing, S. Kennedy, and P. L. Williams, in Genomic Approaches for Cross-Species Extrapolation in Toxicology, Ed. by R. DiGiulio R. and W. H. Benson (Taylor & Francis, Washington, DC, 2007).

  29. R. Deng, Y. He, Y. Qin, Q. Chen, and L. Chen, J. Remote Sens. 16 (1), 192 (2012).

    Google Scholar 

  30. R. H. Cole, Underwater Explosions (Princeton Univ. Press, Princeton, 1948).

    Book  Google Scholar 

  31. EPA-821-R-02-012. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms (U.S. Environmental Protection Agency, Washington, DC, 2002).

  32. N. S. Zhmur, Procedure for Determining Toxicity of Water and Soil-Water Extracts, Wastewater Sludges, Waste Products According to Mortality and Variations in Daphnia Fertility, 2nd ed. (AKVAROS, Moscow, 2007) [in Russian].

    Google Scholar 

  33. J. B. Keller and M. Miksis, J. Acoust. Soc. Am. 68 (2), 628 (1980).

    Article  ADS  Google Scholar 

  34. C. E. Brennen, Cavitation and Bubble Dynamics (Oxford Univ., Oxford, New York, 1995).

    MATH  Google Scholar 

  35. M. Minnaert, Philos. Mag. 16, 235 (1933).

    Article  Google Scholar 

  36. M. Mohammadzadeh, S. R. Gonzalez-Avila, K. Liu, Q. J. Wang, C. and D. Ohl, J. Fluid Mech. 823, R3 (2017). https://doi.org/10.1017/jfm.2017.358

    Article  ADS  Google Scholar 

  37. V. M. Chudnovskii, V. I. Yusupov, S. A. Zhukov, S. B. Echmaev, and V. N. Bagratashvili, Dokl. Phys. 62 (4), 174 (2017).

    Article  ADS  Google Scholar 

  38. V. M. Chudnovskii, V. I. Yusupov, A. V. Dydykin, V. I. Nevozhai, A. Yu. Kisilev, S. A. Zhukov, and V. N. Bagratashvili, Kvantovaya Elektron. 47 (4), 361 (2017).

    Article  Google Scholar 

  39. P. Palma and I. R. Barbosa, Global J. Environ. Sci. Technol. 1 (12), 1714 (2011).

    Google Scholar 

  40. E. F. Isakova and E. E. Kolomenskaya, Ekol. Sist. Prib., No. 7, 31 (2002).

  41. L. B. Goss and D. L. Bunting, Water Res. 10 (5), 387 (1976).

    Article  Google Scholar 

  42. L. B. Feril, Jr. and T. Kondo, J. Radiat. Res. 45 (4), 479 (2004).

    Article  ADS  Google Scholar 

  43. Y. Feng, Z. Tian, and M. Wan, J. Ultrasound Med. 29 (6), 963 (2010).

    Article  Google Scholar 

  44. C. X. Deng, F. Sieling, H. Pan, and J. Cui, Ultrasound Med. Biol. 30 (4), 519 (2004).

    Article  Google Scholar 

  45. H. Honda, T. Kondo, Q. L. Zhao, L. B. Feril, and H. Kitagawa, Ultrasound Med. Biol. 30 (5), 683 (2004).

    Article  Google Scholar 

  46. J. B. Fowlkes, J. Acoust. Soc. Am. 141 (5), 3792 (2017).

    Article  ADS  Google Scholar 

  47. S. Tian, M. Li, F. Dong, and F. Zhang, Int. J. Clin. Exp. Med. 9 (7), 12450 (2016).

    Google Scholar 

  48. S. R. Angle, K. Sena, D. R. Sumner, and A. S. Virdi, Ultrasonics 51 (3), 281 (2011).

    Article  Google Scholar 

  49. V. A. Dubrovskii, K. N. Dvoretskii, and A. E. Balaev, Acoust. Phys. 50 (2), 146 (2004).

    Article  ADS  Google Scholar 

  50. L. B. Feril, T. Kondo, Z. G. Cui, Y. Tabuchi, Q. L. Zhao, H. Ando, and S. I. Umemura, Cancer Lett. 221 (2), 145 (2005).

    Article  Google Scholar 

  51. M. Fatemi, P. L. Ogburn, and J. F. Greenleaf, J. Ultrasound Med. 20 (8), 883 (2001).

    Article  Google Scholar 

  52. O. D. Altland, D. Dalecki, V. N. Suchkova, and C. W. Francis, J. Thromb. Haemostasis 2 (4), 637 (2004).

    Article  Google Scholar 

  53. W. D. O’Brien, Birth 11 (3), 149 (1984).

    Article  Google Scholar 

  54. L. V. Belousov, L. R. Gavrilov, T. V. Ostroumova, and L. B. Solontsova, Akust. Zh. 31 (4), 439 (1985).

    Google Scholar 

  55. W. L. Nyborg and D. L. Miller, in Ultrasound Interactions in Biology and Medicine, Ed. by R. Millner, E. Rosenfeld, and U. Cobet (Springer, Boston, MA, 1983).

    Google Scholar 

  56. M. Aliabouzar, L. G. Zhang, and K. Sarkar, Sci. Rep. 6, 37728 (2016). https://doi.org/10.1038/srep37728

    Article  ADS  Google Scholar 

  57. V. I. Yusupov, S. I. Tsypina, and V. N. Bagratashvili, Laser Phys. Lett. 11 (11), 116001 (2014).

    Article  ADS  Google Scholar 

  58. P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, Nat. Phys. 1 (2), 107 (2006).

    Article  Google Scholar 

  59. F. Yuan, C. Yang, and P. Zhong, Proc. Natl. Acad. Sci. U. S. A. 112 (51), E7039 (2015).

    Article  ADS  Google Scholar 

  60. V. M. Chudnovskii, G. N. Leonova, S. A. Skopinov, A. D. Drozdov, and V. I. Yusupov, Biological Models and Physical Mechanisms of Laser Therapy (Dal’nauka, Vladivostok, 2002) [in Russian].

    Google Scholar 

  61. T. Karu, Ten Lectures on Basic Science of Laser Phototherapy (Prima Books, Grängesberg, 2007).

Download references

ACKNOWLEDGMENTS

This study was supported by the Federal Agency of Scientific Organizations (agreement no. 007-GZ/Ch3363/26) in the part on transport processes and by the Russian Foundation for Basic Research (project nos. 17-02-00832 and 17-02-01248) in the part on biological effects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Yusupov.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusupov, V.I., Vorob’yeva, O.V., Rochev, Y.A. et al. Influence of Hydrodynamic Processes Generated by 1.94-μm Pulsed Laser Radiation on Daphnia magna Crustaceans. Acoust. Phys. 65, 113–122 (2019). https://doi.org/10.1134/S1063771019010160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019010160

Keywords:

Navigation