Skip to main content
Log in

Theory of Acousto-Optic Filtering of Radiation in the Multifrequency Near-Field Zone of a Plane Piezoelectric Transducer

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A theory of acousto-optic filtering is developed based on Bragg diffraction of a plane light wave in the near field of radiation from an acoustic transducer excited by an electric signal with a discrete frequency spectrum. Approximate solutions to the problem have been considered for various degrees of overlap of neighboring discrete passbands of a multiband acousto-optic filter (MAOF) and for various diffraction efficiencies. Particular cases have shown good agreement between the developed analytical method and numerical calculation for the dynamic transmission function of the MAOF under study. It has been noted that insufficient time resolution leads to detection of an averaged transmission function, which could considerably differ from instantaneous samplings of a dynamic transmission pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yu. V. Gulyaev, V. V. Proklov, and G. N. Shkerdin, Sov. Phys. Usp. 21, 29 (1978). doi 10.3367/UFNr.0124.197801b.0061

    Article  ADS  Google Scholar 

  2. V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, The Physical Principles of Acoustooptics (Radio Svyaz’, Moscow, 1985) [in Russian].

    Google Scholar 

  3. A. Korpel, Acoustooptics (CRC, Boca Raton, FL, 1996).

    Google Scholar 

  4. S. E. Harris and R. W. Wallace, J. Opt. Soc. Am. 59, 744 (1969). doi 10.1364/JOSA.59.000744

    Article  ADS  Google Scholar 

  5. T. Yano and A. Watanabe, Appl. Opt. 15, 2250 (1976). doi 10.1364/AO.15.002250

    Article  ADS  Google Scholar 

  6. I. C. Chang, Opt. Eng. 20, 206824 (1981). doi 10.1117/12.7972821

    Article  Google Scholar 

  7. V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, Quantum Electron. 39, 353 (2009).

    Article  ADS  Google Scholar 

  8. S. P. Anikin, V. F. Esipov, V. Ya. Molchanov, A. M. Tatarnikov, and K. B. Yushkov, Opt. Spectrosc. 121, 115 (2016).

    Article  ADS  Google Scholar 

  9. A. V. Vainer, V. V. Proklov, Yu. G. Rezvov, and O. D. Sivkova, J. Commun. Technol. Electron. 62, 1152 (2017).

    Article  Google Scholar 

  10. V. V. Proklov, O. A. Byshevskii-Konopko, and V. I. Grigor’evskii, J. Commun. Technol. Electron. 58, 891 (2013).

    Article  Google Scholar 

  11. V. V. Proklov, O. A. Byshevski-Konopko, and A. V. Lugovskoi, Acta Phys. Polon. A 127, 29 (2015). doi 10.12693/APhysPolA.127.29

    Article  Google Scholar 

  12. V. V. Proklov and Yu. G. Rezvov, Opt. Spectrosc. 124, 121 (2018). doi 10.21883/OS.2018.01.45367.178-17

    Article  ADS  Google Scholar 

  13. V. V. Proklov, O. A. Byshevski-Konopko, and V. I. Grigorievski, Quantum Electron. 43, 542 (2013).

    Article  ADS  Google Scholar 

  14. O. A. Byshevski-Konopko, V. V. Proklov, A. L. Filatov, A. V. Lugovskoi, and E. M. Korablev, Phys. Proc. 73, 251 (2015). doi 10.1016/j.phpro.2015.09.166

    Article  ADS  Google Scholar 

  15. V. V. Proklov, O. A. Byshevski-Konopko, and A. L. Filatov, Tech. Phys. Lett. 41, 987 (2015).

    Article  ADS  Google Scholar 

  16. V. V. Proklov, O. A. Byshevski-Konopko, A. L. Filatov, A. V. Lugovskoi, and Y. V. Pisarevsky, J. Phys.: Conf. Ser. 737, 012060 (2016). doi 10.1088/1742-6596/737/1/012060

    Google Scholar 

  17. O. A. Byshevskii-Konopko, V. V. Proklov, A. V. Lugovskoi, and E. M. Korablev, in Proceedings of the 6th International Conference on Photonics and Informational Optics (NIYaU MIFI, Moscow, 2017), p. 20.

  18. V. V. Proklov, in Proceedings of the 13th School on Acousto-Optics and Applications, Moscow, June 19–23, 2017, p. 44.

  19. K. B. Yushkov and V. Ya. Molchanov, J. Biomed. Opt. 22, 066017 (2017). doi 10.1117/1.JBO.22.6.066017

    Article  ADS  Google Scholar 

  20. V. Ya. Molchanov and K. V. Yushkov, Opt. Express 22, 15668 (2014). doi 10.1364/OE.22.015668

    Article  ADS  Google Scholar 

  21. P. Wang and Z. Zhang, Appl. Opt. 56, 1647 (2017). doi 10.1364/AO.56.001647

    Article  ADS  Google Scholar 

  22. D. L. Hecht, IEEE Trans. Sonics Ultrasonics 24, 7 (1977). doi 10.1109/T-SU.1977.30905

    Article  Google Scholar 

  23. E. A. D’yakonov, V. B. Voloshinov, and N. V. Polikarpova, Opt. Spectrosc. 118, 166 (2015).

    Article  ADS  Google Scholar 

  24. E. A. Dyakonov and V. B. Voloshinov, J. Commun. Technol. Electron. 59, 456 (2014).

    Article  Google Scholar 

  25. V. I. Balakshy and S. N. Mantsevich, Acoust. Phys. 58, 549 (2012).

    Article  ADS  Google Scholar 

  26. N. V. Polikarpova, P. V. Mal’neva, and V. B. Voloshinov, Acoust. Phys. 59, 291 (2013).

    Article  ADS  Google Scholar 

  27. V. I. Balakshy, A. S. Voloshin, and V. Ya. Molchanov, Opt. Spectrosc. 117, 801 (2014).

    Article  ADS  Google Scholar 

  28. A. V. Zakharov and V. B. Voloshinov, Tech. Phys. 61, 1377 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 16-02-00124-a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Proklov or Y. G. Rezvov.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proklov, V.V., Rezvov, Y.G. & Podol’skii, V.A. Theory of Acousto-Optic Filtering of Radiation in the Multifrequency Near-Field Zone of a Plane Piezoelectric Transducer. Acoust. Phys. 64, 678–683 (2018). https://doi.org/10.1134/S106377101901007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377101901007X

Keywords:

Navigation