Skip to main content
Log in

The regulation of osmotic and ionic balance in fish reproduction and in the early stages of ontogeny

  • Review
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

On the basis of the modern literature data we analyzed the influence of the level of salt concentration and ion composition in a fish habitat during the processes of reproduction. The results of studies of the mechanisms of the reaction of fish to gamete hypo- and hyperosmotic stimulus in the external aqueous environment, as well as the role of mineral and organic osmolytes in the adaptation of mature eggs of fishes in the external environment, depend on the hydrochemical and hydrological conditions of the spawning grounds. The paper provides information about the features of the endocrine regulation of oocyte maturation in fish spawning in different hydrological conditions and the importance of humoral factors in the pathological process of the maturation of fish oocytes. The main scientific and practical aspects of the formation of the phys mechanisms that regulate the water-salt balance is the early ontogeny of fishes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zalepukhin, V.V., Optimizatsiya otsenki kachestva proizvoditelei karpovykh ryb v akvakul’ture (Optimization of Assessing the Quality Manufacturers of Cyprinids in Aquaculture), Authoref. Dokt. Diss. (Biol.), Astrakhan’, 2009.

  2. Zhukinskii, V.N., Vliyanie abioticheskikh faktorov na raznokachestvennost’ i zhiznesposobnost’ ryb v rannem ontogeneze (The Influence of Abiotic Factors on the Different Quality and Viability of Fish in the Early Ontogenesis), Moscow: Agropromizdat, 1986.

    Google Scholar 

  3. Alavi, S.M., Cosson, J., Karami, M., et al., Spermatozoa Motility in the Persian Sturgeon, Acipenser persicus: Effects of pH, Dilution Rate, Ions and Osmolality, Reproduction, 2004, vol. 128, pp. 819–828.

    Article  PubMed  CAS  Google Scholar 

  4. Alsop, D. and Vijayan, M.M., Development of the Corticosteroid Stress Axis and Receptor Expression in Zebrafish, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, vol. 294, no. 3, pp. R711–R719.

    Article  PubMed  CAS  Google Scholar 

  5. Alsop, D., Ings, J.S. and Vijayan, M.M., Adrenocorticotropic Hormone Suppresses Gonadotropin-Stimulated Estradiol Release from Zebrafish Ovarian Follicles, PLoS. ONE, 2009, vol. 4, no. 7, p. e6463; doi: 10.1371/journal.pone.0006463.

    Article  PubMed  Google Scholar 

  6. Andreu-Vieyra, C.V., Buret, A.G. and Habibi, H.R., Gonadotropin-Releasing Hormone Induction of Apoptosis in the Testes of Goldfish (Carassius auratus), Endocrinology, 2005, vol. 146, no. 3, pp. 1588–1596.

    Article  PubMed  CAS  Google Scholar 

  7. Ayson, F.G., Kaneko, T., Hasegawa, S., and Hirano, T., Differential Expression of Two Prolactin and Growth Hormone Genes During Early Development of Tilapia (Oreochromis mossambicus) in Fresh Water and Seawater: Implications for Possible Involvement in Osmoregulation During Early Life Stages, Gen. Comp. Endocrinol., 1994, vol. 95, no. 1, pp. 143–152.

    Article  PubMed  CAS  Google Scholar 

  8. Barton, B.A., Stress in Fishes: A Diversity of Responses with Particular Reference to Changes in Circulating Corticosteroids, Integr. Comp. Biol., 2002, vol. 42, no. 3, pp. 517–525.

    Article  PubMed  CAS  Google Scholar 

  9. Bjöornsson, B.T., Stefansson, S.O. and McCormick, S.D., Environmental Endocrinology of Salmon Smoltification, Gen. Comp. Endocrinol., 2011, vol. 170, no. 2, pp. 290–298.

    Article  Google Scholar 

  10. Bodinier, C., Boulo, V., Lorin-Nebel, C., and Charmantier, G., Influence of Salinity on the Localization and Expression of the CFTR Chloride Channel in the Ionocytes of Dicentrarchus labrax During Ontogeny, J. Anat., 2009, vol. 214, no. 3, pp. 318–329.

    Article  PubMed  CAS  Google Scholar 

  11. Campbell, B., Dickey, J., Beckman, B., et al., Previtellogenic Oocyte Growth in Salmon: Relationships among Body Growth, Plasma Insulin-Like Growth Factor-1, Estradiol-17beta, Follicle-Stimulating Hormone and Expression of Ovarian Genes for InsulinLike Growth Factors, Steroidogenic-Acute Regulatory Protein and Receptors for Gonadotropins, Growth Hormone, and Somatolactin, Biol. Reprod., 2006, vol. 75, no. 1, pp. 34–44.

    Article  PubMed  CAS  Google Scholar 

  12. Chaube, R., Chauvigne’, F., Tingaud-Sequeira, A., et al., Molecular and Functional Characterization of Catfish (Heteropneustes fossilis) Aquaporin-1b: Changes in Expression During Ovarian Development and Hormone-Induced Follicular Maturation, Gen. Comp. Endocrinol., 2011, vol. 170, no. 1, pp. 162–171.

    Article  PubMed  CAS  Google Scholar 

  13. Clelland, E.S., Tan, Q., Balofsky, A., et al., Inhibition of Premature Oocyte Maturation: A Role for Bone Morphogenetic Protein 15 in Zebrafish Ovarian Follicles, Endocrinology, 2007, vol. 148, no. 11, pp. 5451–5458.

    Article  PubMed  CAS  Google Scholar 

  14. Consten, D., Lambert, J.G.D., Komen, H., and Goos, H.J.T., Corticosteroids Affect the Testicular Androgen Production in Male Common Carp (Cyprinus carpio L.), Biol. Reprod., 2002, vol. 66, pp. 106–111.

    Article  PubMed  CAS  Google Scholar 

  15. Cosson, J., Groison, A.-L., Suquet, M., et al., Marine Fish Spermatozoa: Racing Ephemeral Swimmers, Reproduction, 2008, vol. 136, pp. 277–294.

    Article  PubMed  CAS  Google Scholar 

  16. Crespo, D., Bonnet, E., Roher, N., et al., Cellular and Molecular Evidence for a Role of Tumor Necrosis Factor Alpha in the Ovulatory Mechanism of Trout, Reprod. Biol. Endocrinol., 2010, vol. 8, pp. 34.

    Article  PubMed  Google Scholar 

  17. Dreanno, C., Cosson, J., Suquet, M., et al., Effects of Osmolality, Morphology Perturbations and Intracellular Nucleotide Content During the Movement of Sea Bass (Dicentrarchus labrax) Spermatozoa, J. Reprod. Fertil., 1999, vol. 116, pp. 113–125.

    Article  PubMed  CAS  Google Scholar 

  18. Elofsson, H., Van Look, K.J., Sundell, K., et al., Stickleback Sperm Saved by Salt in Ovarian Fluid, J. Exp. Biol., 2006, vol. 209, pp. 4230–4237.

    Article  PubMed  CAS  Google Scholar 

  19. Fabra, M., Raldúa, D., Power, D.M., et al., Marine Fish Egg Hydration Is Aquaporin-Mediated, Science, 2005, vol. 307, no. 5709, pp. 545.

    Article  PubMed  CAS  Google Scholar 

  20. Finn, R.N., The Maturational Disassembly and Differential Proteolysis of Paralogous Vitellogenins in a Marine Pelagophil Teleost: A Conserved Mechanism of Oocyte Hydration, Biol. Reprod., 2007, vol. 76, no. 6, pp. 936–948.

    Article  PubMed  CAS  Google Scholar 

  21. Finn, R.N., Østby, G.C., Norberg, B., and Fyhn, H.J., In vivo Oocyte Hydration in Atlantic Halibut (Hippoglossus hippoglossus); Proteolytic Liberation of Free Amino Acids, and Ion Transport, Are Driving Forces for Osmotic Water Influx, J. Exp. Biol., 2002, vol. 205, pp. 211–224.

    PubMed  CAS  Google Scholar 

  22. Flik, G., Varsamos, S., Guerreiro, P.M., et al., Drinking in (Very Young) Fish, Osmoregulation and Drinking in Vertebrates, Hazon, N. and Flik, G., Eds., Oxford: BIOS Scientific Publisher, 2002, pp. 31–47.

    Google Scholar 

  23. Fu, C., Wilson, J.M., Rombough, P.J., and Brauner, C.J., Ions First: Na+ Uptake Shifts from the Skin to the Gills before O2 Uptake in Developing Rainbow Trout, Oncorhynchus mykiss, Proc. Roy. Soc., ser. B, 2010, vol. 277, no. 1687, pp. 1553–1560.

    Article  CAS  Google Scholar 

  24. Giffard-Mena, I., Charmantier, G., Grousset, E., et al., Digestive Tract Ontogeny of Dicentrarchus labrax: Implication in Osmoregulation, Dev. Growth Differ., 2006, vol. 48, no. 3, pp. 139–151.

    Article  PubMed  CAS  Google Scholar 

  25. Guerreiro, P.M., Fuentes, J., Flik, G., et al., Water Calcium Concentration Modifies Whole-Body Calcium Uptake in Sea Bream Larvae During Short-Term Adaptation to Altered Salinities, J. Exp. Biol., 2004, vol. 207, pp. 645–653.

    Article  PubMed  CAS  Google Scholar 

  26. Hill, A.J., Bello, S.M., Prasch, A.L., et al., Water Permeability and TCDD-Induced Edema in Zebrafish Early-Life Stages, Toxicol. Sci., 2004, vol. 78, no. 1, pp. 78–87.

    Article  PubMed  CAS  Google Scholar 

  27. Hiroi, J., Miyazaki, H., Katoh, F., et al., Chloride Turnover and Ion-Transporting Activities of Yolk-Sac Preparations (Yolk Balls) Separated from Mozambique Tilapia Embryos and Incubated in Freshwater and Seawater, J. Exp. Biol., 2005, vol. 208, pp. 3851–3858.

    Article  PubMed  CAS  Google Scholar 

  28. Hoshijima, K. and Hirose, S., Expression of Endocrine Genes in Zebrafish Larvae in Response to Environmental Salinity, J. Endocrinol., 2007, vol. 193, pp. 481–491.

    Article  PubMed  CAS  Google Scholar 

  29. Hwang, P.P., Lee, T.H., Weng, C.F., et al., Presence of Na-K-ATPase in Mitochondria-Rich Cells in the Yolk-Sac Epithelium of Larvae of the Teleost Oreochromis mossambicus, Physiol. Biochem. Zool., 1999, vol. 72, no. 2, pp. 138–144.

    Article  PubMed  CAS  Google Scholar 

  30. Janz, D.M., Kraak, G., van der, Suppression of Apoptosis by Gonadotropin, 17beta-Estradiol, and Epidermal Growth Factor in Rainbow Trout Preovulatory Ovarian Follicles, Gen. Comp. Endocrinol., 1997, vol. 105, no. 2, pp. 186–193.

    Article  PubMed  CAS  Google Scholar 

  31. Ko, H., Park, W., Kim, D.-J., et al., Biological Activities of Recombinant Manchurian Trout FSH and LH: Their Receptor Specificity, Steroidogenic and Vitellogenic Potencies, J. Mol. Endocrinol., 2007, vol. 38, pp. 99–111.

    Article  PubMed  CAS  Google Scholar 

  32. Kohli, G., Hu, S., Clelland, E., et al., Cloning of Transforming Growth Factor-β1 (TGF-β1) and Its Type II Receptor from Zebrafish Ovary and Role of TGF-β1 in Oocyte Maturation, Endocrinology, 2003, vol. 144, no. 5, pp. 1931–1941.

    Article  PubMed  CAS  Google Scholar 

  33. Kristoffersen, B.A., Nerland, A., Nilsen, F., et al., Genomic and Proteomic Analyses Reveal Non-Neofunctionalized Vitellogenins in a Basal Clupeocephalan, the Atlantic Herring, and Point to the Origin of Maturational Yolk Proteolysis in Marine Teleosts, Mol. Biol. Evol., 2009, vol. 26, no. 5, pp. 1029–1044.

    Article  PubMed  CAS  Google Scholar 

  34. Kwok, H.-F., So, W.-K., Wang, Y., and Ge, W., Zebrafish Gonadotropins and Their Receptors: I. Cloning and Characterization of Zebrafish Follicle-Stimulating Hormone and Luteinizing Hormone Receptors—Evidence for Their Distinct Functions in Follicle Development, Biol. Reprod., 2005, vol. 72, no. 6, pp. 1370–1381.

    Article  PubMed  CAS  Google Scholar 

  35. Lethimonier, C., Flouriot, G., Valotaire, Y., et al., Transcriptional Interference between Glucocorticoid Receptor and Estradiol Receptor Mediates the Inhibitory Effect of Cortisol on Fish Vitellogenesis, Biol. Reprod., 2000, vol. 62, no. 6, pp. 1763–1771.

    Article  PubMed  CAS  Google Scholar 

  36. Liu, N.-A., Liu, Q., Wawrowsky, K., et al., Prolactin Receptor Signaling Mediates the Osmotic Response of Embryonic Zebrafish Lactotrophs, Mol. Endocrinol., 2006, vol. 20, no. 4, pp. 871–880.

    Article  PubMed  CAS  Google Scholar 

  37. Madsen, S.S., Kiilerich, P., Tipsmark, Ch.K., Multiplicity of Expression of Na+, K+-ATPase α-Subunit Isoforms in the Gill of Atlantic Salmon (Salmo salar): Cellular Localization and Absolute Quantification in Response to Salinity Change, J. Exp. Biol., 2009, vol. 212, pp. 78–88.

    Article  PubMed  CAS  Google Scholar 

  38. Mazon, A.F., Verburg-van Kemenade, B., Flik, G., and Huising, M.O., Corticotrophin-Releasing Hormone-Receptor 1 (CRH-R1) and CRH-Binding Protein (CRH-BP) Are Expressed in the Gills and Skin of Common Carp Cyprinus carpio L. and Respond to Acute Stress and Infection, J. Exp. Biol., 2006, vol. 209, pp. 510–517.

    Article  PubMed  CAS  Google Scholar 

  39. McCormick, S.D., Shrimpton, J.M., Moriyama, Sh., and Björnsson, B.T., Effects of an Advanced Temperature Cycle on Smolt Development and Endocrinology Indicate That Temperature Is Not a Zeitgeber for Smolting in Atlantic Salmon, J. Exp. Biol., 2002, vol. 205, pp. 3553–3560.

    PubMed  Google Scholar 

  40. Milla, S., Jalabert, B., Rime, H., et al., Hydration of Rainbow Trout Oocyte During Meiotic Maturation and in vitro Regulation by 17,20β-Dihydroxy-4-Pregnen-3-One and Cortisol, J. Exp. Biol., 2006, vol. 209, pp. 1147–1156.

    Article  PubMed  CAS  Google Scholar 

  41. Miura, C., Higashino, T. and Miura, T., A Progestin and an Estrogen Regulate Early Stages of Oogenesis in Fish, Biol. Reprod., 2007, vol. 77, no. 5, pp. 822–828.

    Article  PubMed  CAS  Google Scholar 

  42. Morisawa, M. and Suzuki, K., Osmolality and Potassium Ions: Their Roles in Initiation of Sperm Motility in Teleosts, Science, 1980, vol. 210, pp. 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  43. Morita, M., Takemura, A. and Okuno, M., Requirement of Ca2+ on Activation of Sperm Motility in Euryhaline Tilapia Oreochromis mossambicus, J. Exp. Biol., 2003, vol. 206, pp. 913–921.

    Article  PubMed  CAS  Google Scholar 

  44. Nagashima, K., Wu, J., Kavouras, S.A., and Mack, G.W., Increased Renal Tubular Sodium Reabsorption During Exercise-Induced Hypervolemia in Humans, J. Appl. Physiol., 2001, vol. 91, no. 3, pp. 1229–1236.

    PubMed  CAS  Google Scholar 

  45. Nilsen, T.O., Ebbesson, L.O., Madsen, S.S., et al., Differential Expression of Gill Na+, K+-ATPase Alpha- and Beta-Subunits, Na+, K+, 2Cl-Cotransporter and CFTR Anion Channel in Juvenile Anadromous and Landlocked Atlantic Salmon Salmo salar, J. Exp. Biol., 2007, vol. 210, pp. 2885–2896.

    Article  PubMed  CAS  Google Scholar 

  46. Oda, S., Morisawa, M. Rises of Ca2+ and pH Mediate the Initiation of Sperm Motility by the Hyperosmolality in Marine Teleosts, Cell Motil Cytoskeleton, 1993, vol. 25, pp. 171–178.

    Article  PubMed  CAS  Google Scholar 

  47. Pan, T.-Ch., Liao, B.-K., Huang, Ch.-J., et al., Epithelial Ca2+ Channel Expression and Ca2+ Uptake in Developing Zebrafish, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, vol. 289, no. 4, pp. R1202–R1211.

    Article  PubMed  CAS  Google Scholar 

  48. Patiñno, R. and Thomas, D., Effects of Gonadotropin on Ovarian Intrafollicular Processes During the Development of Oocyte Maturational Competence in a Teleost, the Atlantic Croaker: Evidence for Two Distinct Stages of Gonadotropin Control of Final Oocyte Maturation, Biol. Reprod., 1990, vol. 43, no. 5, pp. 818–827.

    Article  Google Scholar 

  49. Raldúa, D., Fabra, M., Bozzo, M.G., et al., Cathepsin B-Mediated Yolk Protein Degradation During Killifish Oocyte Maturation Is Blocked by an H+-ATPase Inhibitor: Effects on the Hydration Mechanism, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, vol. 290, no. 2, pp. R456–R466.

    Article  PubMed  Google Scholar 

  50. Saito, K., Nakamura, N., Ito, Y., et al., Identification of Zebrafish Fxyd11a Protein That is Highly Expressed in Ion-Transporting Epithelium of the Gill and Skin and Its Possible Role in Ion Homeostasis, Front. Physiol., 2010, vol. 1, pp. 129.

    Article  PubMed  CAS  Google Scholar 

  51. Schnermann, J., The Juxtaglomerular Apparatus: From Anatomical Peculiarity to Physiological Relevance, J. Am. Soc. Nephrol., 2003, vol. 14, pp. 1681–1694.

    Article  PubMed  Google Scholar 

  52. Scott, G.R., Sloman, K.A., Rouleau, C., and Wood, Ch.M., Cadmium Disrupts Behavioural and Physiological Responses to Alarm Substance in Juvenile Rainbow Trout (Oncorhynchus mykiss), J. Exp. Biol., 2003, vol. 206, pp. 1779–1790.

    Article  PubMed  CAS  Google Scholar 

  53. Selman, K. and Wallace, R.A., Cellular Aspects of Oocyte Growth in Teleosts, Zool. Sci., 1989, vol. 6, pp. 211–231.

    Google Scholar 

  54. Shen, W.-P., Horng, J.-L., and Lin L.-Y., Functional Plasticity of Mitochondrion-Rich Cells in the Skin of Euryhaline Medaka Larvae (Oryzias latipes) Subjected to Salinity Changes, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, vol. 300, no. 4, pp. R858–R868.

    Article  PubMed  CAS  Google Scholar 

  55. Stolte, E.H., Mazon, A.F., de, Leon-Koosterziel, K.M., et al., Corticosteroid Receptors Involved in Stress Regulation in Common Carp, Cyprinus carpio, J. Endocrinol., 2008, vol. 198, pp. 403–417.

    Article  PubMed  CAS  Google Scholar 

  56. Swanson, P., Dickey, J.T. and Campbell, B., Biochemistry and Physiology of Fish Gonadotropins, Fish Physiol. Biochem., 2003, vol. 28, pp. 53–59.

    Article  CAS  Google Scholar 

  57. Takai, H. and Morisawa, M., Change in Intracellular K+ Concentration Caused by External Osmolality Change Regulates Sperm Motility of Marine and Freshwater Teleosts, J. Cell. Sci., 1995, vol. 108, pp. 1175–1181.

    PubMed  CAS  Google Scholar 

  58. Tingaud-Sequeira, A., Chauvigné, F., Fabra, M., et al., Structural and Functional Divergence of Two Fish Aquaporin-1 Water Channels Following Teleost-Specific Gene Duplication, BMC Evol. Biol., 2008, vol. 8, pp. 259, doi:10.1186/1471-2148-8-259.

    Article  PubMed  Google Scholar 

  59. Tipsmark, C.K., Kiilerich, P., Nilsen, T.O., et al., Branchial Expression Patterns of Claudin Isoforms in Atlantic Salmon During Seawater Acclimation and Smoltification, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, vol. 294, pp. R1563–R1574.

    Article  PubMed  CAS  Google Scholar 

  60. Varsamos, S., Connes, R., Diaz, J.P., et al., Ontogeny of Osmoregulation in the European Sea Bass Dicentrarchus labrax L., Mar. Biol., 2001, vol. 138, pp. 909–915.

    Article  Google Scholar 

  61. Varsamos, S., Nebel, C. and Charmantier, G., Ontogeny of Osmoregulation in Postembryonic Fish: A Review, Comp. Biochem. Physiol., ser. A: Mol. Integr. Physiol., 2005, vol. 141, no. 4, pp. 401–429.

    Article  Google Scholar 

  62. Vines, C.A., Yoshida, K., Griffin, F.J., et al., Motility Initiation in Herring Sperm Is Regulated by Reverse Sodium-Calcium Exchange, PNAS, 2002, vol. 99, no. 4, pp. 2026–2031.

    Article  PubMed  CAS  Google Scholar 

  63. Wallace, R.A., Greeley, M.S. Jr. and McPherson, R., Analytical and Experimental Studies on the Relationship Between Na+, K+, and Water-Uptake During Volume Increases Associated with Fundulus Oocyte Maturation in vitro, J. Comp. Physiol., ser. B, 1992, vol. 162, pp. 241–248.

    Article  CAS  Google Scholar 

  64. Watanabe, S., Hirano, T., Grau, E.G., and Kaneko, T., Osmosensitivity of Prolactin Cells Is Enhanced by the Water Channel Aquaporin-3 in a Euryhaline Mozambique Tilapia (Oreochromis mossambicus), Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, vol. 296, no. 2, pp. R446–R453.

    Article  PubMed  CAS  Google Scholar 

  65. Watanabe, W.O. and Kuo, C.M., Water and Ion Balance in Hydrating Oocytes of the Grey Mullet, Mugil cephalus (L.), During Hormonal Induced Final Maturation, J. Fish. Biol., 1986, vol. 28, pp. 425–437.

    Article  CAS  Google Scholar 

  66. Weihrauch, D., Wilkie, M.P. and Walsh, P.J., Ammonia and Urea Transporters in Gills of Fish and Aquatic Crustaceans, J. Exp. Biol., 2009, vol. 212, pp. 1716–1730.

    Article  PubMed  CAS  Google Scholar 

  67. Wood, A.W. and Kraak, G.J., van der, Apoptosis and Ovarian Function: Novel Perspectives from the Teleosts, Biol. Reprod., 2001, vol. 64, no. 1, pp. 264–271.

    Article  PubMed  CAS  Google Scholar 

  68. Wood, A.W. and Kraak G., van der, Inhibition of Apoptosis in Vitellogenic Ovarian Follicles of Rainbow Trout (Oncorhynchus mykiss) by Salmon Gonadotropin, Epidermal Growth Factor, and 17beta-Estradiol, Mol. Reprod. Dev., 2002, vol. 61, no. 4, pp. 511–518.

    Article  PubMed  CAS  Google Scholar 

  69. Wu, Sh.-Ch., Horng, J.-L., Liu, S.-T., et al., Ammonium-Dependent Sodium Uptake in Mitochondrion-Rich Cells of Medaka (Oryzias latipes) Larvae, Am. J. Physiol. Cell. Physiol., 2010, vol. 298, no. 2, pp. C237–C250.

    Article  PubMed  CAS  Google Scholar 

  70. Yada, T., Tsuruta, T., Sakano, H., et al., Changes in Prolactin mRNA Levels During Downstream Migration of the Amphidromous Teleost, Ayu Plecoglossus altivelis, Gen. Comp. Endocrinol., 2010, vol. 167, no. 2, pp. 261–267.

    Article  PubMed  CAS  Google Scholar 

  71. Yanagie, R., Lee, K.M., Watanabe, S., and Kaneko, T., Oncogenic Change in Tissue Osmolality and Developmental Sequence of Mitochondria-Rich Cells in Mozambique Tilapia Developing in Freshwater, Comp. Biochem. Physiol., ser. A: Mol. Integr. Physiol., 2009, vol. 154, no. 2, pp. 263–269.

    Article  Google Scholar 

  72. Zilli, L., Schiavone, R., Chauvigné, F., et al., Evidence for the Involvement of Aquaporins in Sperm Motility Activation of the Teleost Gilthead Sea Bream (Sparus aurata), Biol. Reprod., 2009, vol. 81, no. 5, pp. 880–888.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zukow.

Additional information

Original Russian Text © S.I. Dolomatov, W. Zukow, N.Yu. Novikov, R. Muszkieta, I. Bulatowicz, M. Dzierzanowski, U. Kazmierczak, K. Strojek, 2012, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolomatov, S.I., Zukow, W., Novikov, N.Y. et al. The regulation of osmotic and ionic balance in fish reproduction and in the early stages of ontogeny. Russ J Mar Biol 38, 365–374 (2012). https://doi.org/10.1134/S1063074012050057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074012050057

Keywords

Navigation