Skip to main content
Log in

Molecular Strategies for Transdifferentiation of Retinal Pigment Epithelial Cells in Amphibians and Mammals In Vivo

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Retinal pigment epithelium (RPE) is a source of cells for retinal regeneration in amphibians in vivo and the development of retinal diseases in mammals and humans. Transdifferentiation of RPE cells into cells of other phenotypes is the basis for both processes: RPE cells transform into neural in the first case and into mesenchymal cells in the second case. The review describes the main stages of RPE cell transdifferentiation: initiation of the process, cell migration and proliferation, dedifferentiation, reprogramming, and specialization of cells into new directions. Information about the molecular and genetic mechanisms that ensure the passage of these stages by cells is given. Molecular participants of the regulation of transdifferentiation on the levels of the whole organism, the local cellular microenvironment (growth factors, signaling cascades), the expression of transcription factors, and the epigenome regulation are presented. Similarities and differences in the molecular and genetic mechanisms of implementation of different strategies for RPE transdifferentiation in amphibians and mammals are noted. The discovery of key molecular regulators of this choice serves both for the development of the theory of cellular reprogramming and approaches for the treatment of proliferative diseases of the human retina associated with RPE pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abe, T., Sato, M., and Tamai, M., Dedifferentiation of the retinal pigment epithelium compared to the proliferative membranes of proliferative vitreoretinopathy, Curr. Eye Res., 1998, vol. 17, no. 12, pp. 1103–1109.

    Article  CAS  PubMed  Google Scholar 

  2. Abu El-Asrar, A.M., Steen, P.E., Al-Amro, S.A., et al., Expression of angiogenic and fibrogenic factors in proliferative vitreoretinal disorders, Int. Ophthalmol., 2007, vol. 27, pp. 11–22.

    Article  PubMed  Google Scholar 

  3. Abu El-Asrar, A.M., Midena, E., Al-Shabrawey, M., and Mohammad, G., New developments in the pathophysiology and management of diabetic retinopathy, J. Diabetes Res., 2013, vol. 2013, p. 424258.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ahlstromand, J.D. and Erickson, C.A., The neural crest epithelial mesenchymal transition in 4D: a “tail” of multiple non-obligatory cellular mechanisms, Development, 2009, vol. 136, no. 11, pp. 1801–1812.

    Article  CAS  Google Scholar 

  5. Al-Hussaini, H., Vugler, A., Semo, M., and Jeffery, G., Mature mammalian retinal pigment epithelium cells proliferate in vivo, Mol. Vis., 2008, vol. 14, pp. 1784–1791.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Aldiri, I., Xu, B., Wang, L., et al., The dynamic epigenetic landscape of the retina during development, reprogramming, and tumorigenesis, Neuron, 2017, vol. 94, no. 3, pp. 550–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alge, C.S., Suppmann, S.G., Priglinger, et al., “Comparative” proteome analysis of native differentiated and cultured dedifferentiated human RPE cells, Invest. Ophthalmol. Vis. Sci., 2003, vol. 44, no. 8, pp. 3629–3641.

    Article  PubMed  Google Scholar 

  8. Alvarado, S.A. and Tsonis, P.A., Bridging the regeneration gap: genetic insights from diverse animal models, Nat. Rev. Genet., 2006, vol. 7, pp. 873–884.

    Article  CAS  Google Scholar 

  9. Araki, M., Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation, Dev. Growth Differ., 2007, vol. 49, no. 2, pp. 109–120.

    Article  PubMed  Google Scholar 

  10. Asato, R., Yoshida, S., Ogura, A., Nakama, T., Ishikawa, K., Nakao, S., Sassa, Y., Enaida, H., Oshima, Y., Ikeo, K., et al., Comparison of gene expression profile of epiretinal membranes obtained from eyes with proliferative vitreoretinopathy to that of secondary epiretinal membranes, PLoS One, 2013, vol. 8. e54191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Avdonin, P.P., Markitantova, Yu.V., Zinovieva, R.D., and Mitashov, V.I., Expression of regulatory genes Pax6, Otx2, Six3, and FGF2 during newt retina regeneration, Biol. Bull. (Moscow), 2008, vol. 35, p. 355.

    Article  CAS  Google Scholar 

  12. Avdonin, P.P., Grigoryan, E.N., and Markitantova, Y.V., Transcriptional factor Pitx2: localization during newt retina regeneration, Biol. Bull. (Moscow), 2010, vol. 37, no. 3, pp. 231–235.

    Article  CAS  Google Scholar 

  13. Azuma, N., Tadokoro, K., Asaka, A., et al., Transdifferentiation of the retinal pigment epithelia to the neural retina by transfer of the pax6 transcriptional factor, Hum. Mol. Genet., 2005, vol. 14, no. 8, pp. 1059–1068.

    Article  CAS  PubMed  Google Scholar 

  14. Basinski, B.W., Balikov, D.A., Aksu, D., Li, Q., and Rao, R.C., Ubiquitous chromatin modifiers in congenital retinal diseases: implications for disease modeling and regenerative medicine, Trends Mol. Med., 2021 (in press).

  15. Benayoun, B.A., Caburet, S., and Veitia, R.A., Forkhead transcription factors: key players in health and disease, Trends Genet., 2011, vol. 27, pp. 224–232.

    Article  CAS  PubMed  Google Scholar 

  16. Bharti, K., Nguyen, M.T., Skuntz, S., Bertuzzi, S., and Arnheiter, H., The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye, Pigment Cell Res., 2006, vol. 19, pp. 380–394.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Biscotti, M.A., Carducci, F., Barucca, M., et al., The transcriptome of the newt Cynops orientalis provides new insights into evolution and function of sexual gene networks in sarcopterygians, Sci. Rep., 2020, vol. 10, p. 5445.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Blenkinsop, T.A., Salero, E., Stern, J.H., and Temple, S., The culture and maintenance of functional retinal pigment epithelial monolayers from adult human eye, Methods Mol. Biol., 2013, vol. 945, pp. 45–55.

    Article  PubMed  CAS  Google Scholar 

  19. Blenkinsop, T.A., Saini, J.S., Maminishkis, A., et al., Human adult retinal pigment epithelial stem cell-derived RPE monolayers exhibit key physiological characteristics of native tissue, Invest. Ophthalmol. Vis. Sci., 2015, vol. 56, no. 12, pp. 7085–7099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bochaton-Piallat, M.L., Kapetanios, A.D., Donati, G., et al., TGF-beta1, TGF-beta receptor II and ED-A fibronectin expression in myofibroblast of vitreoretinopathy, Invest. Ophthalmol. Vis. Sci., 2000, vol. 41, pp. 2336–2342.

    CAS  PubMed  Google Scholar 

  21. Boles, N., Fernandes, M., Swigut, T., Srinivasan, R., et al., Epigenomic and transcriptomic changes during human RPE EMT in a stem cell model of epiretinal membrane pathogenesis and prevention by nicotinamide, Stem Cell Rep., 2020, vol. 14, pp. 631–647.

    Article  CAS  Google Scholar 

  22. Bonnans, C., Chou, J., and Werb, Z., Remodelling the extracellular matrix in development and disease, Nat. Rev. Mol. Cell Biol., 2014, vol. 15, pp. 786–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bruckskotten, M., Looso, M., Reinhardt, R., Braun, T., and Borchardt, T., Newt-omics: a comprehensive repository for omics data from the newt Notophthalmus viridescens, Nucleic Acids Res., 2012, vol. 40 (Database issue), pp. D895–D900.

    Article  CAS  PubMed  Google Scholar 

  24. Buchholz, D.E., Pennington, B.O., Croze, R.H., Hinman, C.R., Coffey, P.J., et al., Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium, Stem Cells Transl. Med., 2013, vol. 2, pp. 384–393.https://doi.org/10.5966/sctm.2012-0163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burke, J.M., Epithelial phenotype and the RPE: is the answer blowing in the Wnt?, Prog. Retin. Eye Res., 2008, vol. 27, no. 6, pp. 579–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burke, J.M. and Hjelmeland, L.M., Mosaicism of the retinal pigment epithelium: seeing the small picture, Mol. Interv., 2005, vol. 5, p. 241.

    Article  PubMed  Google Scholar 

  27. Burke, J.M., Skumatz, C.M., Irving, P.E., and McKay, B.S., Phenotypic heterogeneity of retinal pigment epithelial cells in vitro and in situ, Exp. Eye Res., 1996, vol. 62, pp. 63–73.

    Article  CAS  PubMed  Google Scholar 

  28. Casaroli-Marano, R.P., Pagan, R., and Vilaro, S., Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells, Invest. Ophthalmol. Vis. Sci., 1999, vol. 40, pp. 2062–2072.

    CAS  PubMed  Google Scholar 

  29. Casco-Robles, M.M., Islam, M.R., Inami, W., et al., Turning the fate of reprogramming cells from retinal disorder to regeneration by Pax6 in newts, Sci. Rep., 2016, vol. 6, p. 33761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, H.C., Zhu, Y.T., Chen, S.Y., and Tseng, S.C., Wnt signaling induces epithelial-mesenchymal transition with proliferation in APRE-19 cells upon loss of contact inhibition, Lab. Invest., 2012, vol. 92, pp. 676–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, X., Muller, G.A., Quaas, M., Fischer, M., Han, N., et al., The forkhead transcription factor FoxM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism, Mol. Cell. Biol., 2013, vol. 33, pp. 227–236.https://doi.org/10.1128/MCB.00881-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, T. and Dent, S.Y.R., Chromatin modifiers: regulators of cellular differentiation, Nat. Rev. Genet., 2014, vol. 15, no. 2, pp. 93–106.

    Article  CAS  PubMed  Google Scholar 

  33. Chen, Z., Shao, Y., and Li, X., The roles of signaling pathways in epithelial-to-mesenchymal transition of PVR, Mol. Vis., 2015, vol. 21, pp. 706–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiba, C., The retinal pigment epithelium: an important player of retinal disorders and regeneration, Exp. Eye Res., 2014, vol. 123, pp. 107–114.

    Article  CAS  PubMed  Google Scholar 

  35. Chiba, C. and Mitashov, V.I., Cellular and molecular events in the adult newt retinal regeneration, in Strategies for Retinal Tissue Repair and Regeneration in Vertebrates: from Fish to Human, Chiba Ch., Ed., Kerala, India: Research Signpost, 2007, pp. 15–33.

    Google Scholar 

  36. Chiba, C., Hoshino, A., Nakamura, K., et al., Visual cycle protein RPE65 persists in new retinal cells during retinal regeneration of adult newt, J. Com. Neurol., 2006, vol. 495, pp. 391–407.

    Article  CAS  Google Scholar 

  37. Choudhary, P., Dodsworth, B.T., Sidders, B., Gutteridge, A., Michaelides, C., Duckworth, J.K., et al., A FOXM1 dependent mesenchymal–epithelial transition in retinal pigment epithelium cells, PLoS One, 2015, vol. 10, no. 6. e0130379. https://doi.org/10.1371/journal.pone.0130379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chow, R.L. and Lang, R.A., Early eye development in vertebrates, Annu. Rev. Cell Dev. Biol., 2001, vol. 17, pp. 255–262.

    Article  CAS  PubMed  Google Scholar 

  39. Chtcheglova, L.A., Ohlmann, A., Boytsov, D., et al., Nanoscopic approach to study the early stages of epithelial to mesenchymal transition (EMT) of human retinal pigment epithelial (RPE) cells in vitro, Life (Basel), 2020, vol. 10, no. 8, p. 128.

    Article  CAS  PubMed Central  Google Scholar 

  40. Connor, T.B., Jr., Roberts, A.B., Sporn, M.B., et al., Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye, J. Clin. Invest., 1989, vol. 83, pp. 1661–1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Corso-Díaz, X., Jaeger, C., Chaitankar, V., and Swaroop, A., Epigenetic control of gene regulation during development and disease: a view from the retina, Prog. Retin. Eye Res., 2018, vol. 65, pp. 1–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Davis, R.L., Weintraub, H., and Lassar, A.B., Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell, 1987, vol. 51, pp. 987–1000.

    Article  CAS  PubMed  Google Scholar 

  43. Defoe, D.M. and Grindstaff, R.D., Epidermal growth factor stimulation of RPE cell survival: contribution of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, Exp. Eye Res., 2004, vol. 79, no. 1, pp. 51–59.

    Article  CAS  PubMed  Google Scholar 

  44. Du, L., Yamamoto, S., Burnette, B.L., Huang, D., Gao, K., Jamshidi, N., and Kuo, M.D., Transcriptome profiling reveals novel gene expression signatures and regulating transcription factors of TGFbeta-induced epithelial-to-mesenchymal transition, Cancer Med., 2016, vol. 5, pp. 1962–1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Durairaj, C., Chastain, J.E., and Kompella, U.B., Intraocular distribution of melanin in human, monkey, rabbit, minipig and dog eyes, Exp. Eye Res., 2012, vol. 98, no. 1, pp. 23–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dvashi, Z., Goldberg, M., Adir, O., et al., TGF-β1 induced transdifferentiation of RPE cells is mediated by TAK1, PLoS One, 2015, vol. 10, e0122229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Dvoriantchikova, D., Seemungal, R.J., and Ivanov, D., The epigenetic basis for the impaired ability of adult murine retinal pigment epithelium cells to regenerate retinal tissue, Sci. Rep., 2019, vol. 9, p. 3860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Eguchi, G., Transdifferentiation and Instability in Cell Commitment, Okada, T.S. and Kondoh, H., Eds., Yamada Science Foundation, 1986.

    Google Scholar 

  49. Eguchi, G., Transdifferentiation in pigmented epithelial cells of vertebrate eyes in vitro, in Mechanisms of Cell Change, Ebert, J.D. and Okada, T.S., Eds., New York: Wiley, 1979, pp. 273–291.

    Google Scholar 

  50. Engelhardt, M., Bogdahn, U., and Aigner, L., Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin, Brain Res., 2005, vol. 1040, pp. 98–111.

    Article  CAS  PubMed  Google Scholar 

  51. Evans, A.L. and Gage, P.J., Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development, Hum. Mol. Genet., 2005, vol. 14, no. 22, pp. 3347–3359. https://doi.org/10.1093/hmg/ddi365

    Article  CAS  PubMed  Google Scholar 

  52. Faktorovich, E., Steinberg, R., Yasumura, D., et al., Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat, J. Neurosci., 1992, vol. 12, no. 9, pp. 3554–3560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Farjood, F. and Vargis, E., Physical disruption of cell-cell contact induces VEGF expression in RPE cells, Mol. Vis., 2017, vol. 23, pp. 431–446.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Faunes, F., Gundermann, D.G., Munoz, R., et al., The heterochronic gene Lin28 regulates amphibian metamorphosis through disturbance of thyroid hormone function, Dev. Biol., 2017, vol. 425, pp. 142–151.

    Article  CAS  PubMed  Google Scholar 

  55. Feist, R.M., Jr., King, J.L., Morris, R., Witherspoon, C.D., and Guidry, C., Myofibroblast and extracellular matrix origins in proliferative vitreoretinopathy, Graefes. Arch. Clin. Exp. Ophthalmol., 2014, vol. 252, pp. 347–357.

    Article  CAS  PubMed  Google Scholar 

  56. Fernandez-Robredo, P., Sancho, A., Johnen, S., et al., Current treatment limitations in age-related macular degeneration and future approaches based on cell therapy and tissue engineering, J. Ophthalmol., 2014.

  57. Flood, M.T., Gouras, P., and Kjeldbye, H., Growth characteristics and ultrastructure of human retinal pigment epithelium in vitro, Invest. Ophthalmol. Vis. Sci., 1980, pp. 1309–1320.

  58. Fuchs, H.R., Meister, P., Lotke, R., and Framme, C., The microRNAs miR-302d and miR-93 inhibit TGFB-mediated EMT and VEGFA secretion from ARPE-19 cells, Exp. Eye Res., 2020, vol. 201, p. 108258.

    Article  CAS  PubMed  Google Scholar 

  59. Fuhrmann, S., Zou, C.J., and Levine, E.M., Retinal pigment epithelium development, plasticity, and tissue homeostasis, Exp. Eye Res., 2014, vol. 0, pp. 141–150.

    Article  CAS  Google Scholar 

  60. Gallina, D., Palazzo, I., Steffenson, L., et al., Wnt/в-catenin-signaling and the formation of Muller glia-derived progenitors in the chick retina, Dev. Neurobiol., 2016, vol. 76, no. 9, pp. 983–1002.

    Article  CAS  PubMed  Google Scholar 

  61. Galy, A., Nґeron, B., Planque, N., Saule, S., and Eychéne, A., Activated MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented epithelium into neural retina, Dev. Biol., 2002, vol. 248, no. 2, pp. 251–264.

    Article  CAS  PubMed  Google Scholar 

  62. Garcia-Ramírez, M., Hernández, C., Villarroel, M., et al., Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabetic retinopathy, Diabetologia, 2009, vol. 52, no. 12, pp. 2633–2641.

    Article  PubMed  CAS  Google Scholar 

  63. Garweg, J.G., Tappeiner, C., and Halberstadt, M., Pathophysiology of proliferative vitreoretinopathy in retinal detachment, Surv. Ophthalmol., 2013, vol. 58, pp. 321–329.

    Article  PubMed  Google Scholar 

  64. Geller, S.F., Lewis, G.P., and Fisher, S.K., FGFR1, signaling, and AP-1 expression after retinal detachment: reactive Muller and RPE cells, Invest. Ophthalmol. Vis. Sci., 2001, vol. 42, pp. 1363–1369.

    CAS  PubMed  Google Scholar 

  65. Georgiadis, A., Tschernutter, M., Bainbridge, J.W.B., et al., The tight junction associated signalling proteins ZO-1 and ZONAB regulate retinal pigment epithelium homeostasis in mice, PLoS One, 2010, vol. 5, no. 12. e15730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Graw, J., Eye development, Curr. Top. Dev. Biol., 2010, vol. 90, pp. 343–386. https://doi.org/10.1016/S0070-2153(10)90010-0

    Article  PubMed  Google Scholar 

  67. Grigoryan, E.N., The complete neural retina detachment induces the changes of cytokeratin expression in retinal pigmented epithelium cells in newts, Izv. Akad. Nauk, Ser. Biol., 1995, no. 4, pp. 412–421.

  68. Grigoryan, E.N., Shared triggering mechanisms of retinal regeneration in lower vertebrates and retinal rescue in higher ones, in Tissue Regeneration—From Basic Biology to Clinical Application, Davies, J., Ed., Croatia: In Tech, 2012, pp. 145–164.

  69. Grigoryan, E.N., Competence factors of retinal pigment epithelium cells for reprogramming in the neuronal direction during retinal regeneration in newts, Biol. Bull. (Moscow), 2015, vol. 1, pp. 5–16.

    Google Scholar 

  70. Grigoryan, E.N., High regenerative ability of tailed amphibians (Urodela) as a result of the expression of juvenile traits be mature animals, Russ. J. Dev. Biol., 2016, vol. 47, no. 2, pp. 83–92.

    Article  CAS  Google Scholar 

  71. Grigoryan, E.N., Molecular factors of the maintenance and activation of the juvenile phenotype of cellular sources for eye tissue regeneration, Biochemistry (Moscow), 2018, vol. 83, pp. 1627–1642.

    Google Scholar 

  72. Grigoryan, E.N., Potential endogenous cell sources for retinal regeneration in vertebrates and humans: progenitor traits and specialization, Biomedicines, 2020, vol. 8, p. 208.

    Article  CAS  PubMed Central  Google Scholar 

  73. Grigoryan, E.N., Study of natural longlife juvenility and tissue regeneration in caudate amphibians and potential application of resulting data in biomedicine, J. Dev. Biol., 2021, vol. 9, p. 2.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Grigoryan, E.N. and Anton, H.J., An appearance and distribution of neurofilament proteins (NF-200) in transdifferentiating retinal pigment cells and other eye cells during the process of neural retina regeneration in newts, Ontogenez, 1993, vol. 24, no. 4, pp. 39–52.

    CAS  Google Scholar 

  75. Grigoryan, E.N. and Anton, H.J., Analysis of keratin expression in retinal pigment epithelium cells during their transdifferentiation in newts, Ontogenez, 1995, vol. 26, no. 4, pp. 310–323.

  76. Grigoryan, E.N. and Markitantova, Y.V., Cellular and molecular preconditions for retinal pigment epithelium (RPE) natural reprogramming during retinal regeneration in Urodela, Biomedicines, 2016, vol. 4, pp. 10–28.

    Article  CAS  Google Scholar 

  77. Grigoryan, E.N. and Mitashov, V.I., Radioautographic investigation of proliferation and melanin synthesis in retinal pigment epithelium cells during eye regeneration in newts, Russ. J. Dev. Biol., 1979, vol. 10, no. 2, pp. 137–144.

    CAS  Google Scholar 

  78. Grigoryan, E.N., Dol’nikova, A.E., and Belkin, V.M., Fibronectin distribution during the transdifferentiation and proliferation of eye cells after retinal detachment and removal of the crystalline lens in newts, Russ. J. Dev. Biol., 1990, vol. 21, pp. 403–408.

    CAS  Google Scholar 

  79. Gurdon, J.B., The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles, J. Embryol. Exp. Morphol., 1962, vol. 10, pp. 622–640.

    CAS  PubMed  Google Scholar 

  80. Han, J.W., Lyu, J., Park, Y.J., et al., Wnt/β-catenin signaling mediates regeneration of retinal pigment epithelium after laser photocoagulation in mouse eye, Invest. Ophthalmol. Vis. Sci., 2015, vol. 56, pp. 8314–8324.

    Article  CAS  PubMed  Google Scholar 

  81. Hasegawa, M., Restitution of the eye after removal of the retina and lens in the newt Triturus pyrrhogaster, Embryologia, 1958, vol. 4, pp. 1–32.

    Article  Google Scholar 

  82. Hay, E.D., The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it, Dev. Dynam., 2005, vol. 233, no. 3, pp. 706–720.

    Article  CAS  Google Scholar 

  83. Hayashi, T. and Carthew, R.W., Surface mechanics mediate pattern formation in the developing retina, Nature, 2004, vol. 7, no. 431 (7009), pp. 647–652. https://doi.org/10.1038/nature02952

  84. Haynes, T., Luz-Madrigal, A., Reis, E.S., et al., Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration, Nat. Commun., 2013, vol. 4, p. 2312.

    Article  PubMed  CAS  Google Scholar 

  85. Hecquet, C., Lefevre, G., Valtink, M., et al., Activation and role of MAP kinase-dependent pathways in retinal pigment epithelial cells: ERK and RPE cell proliferation, Invest. Ophthalmol. Vis. Sci., 2002, vol. 43, pp. 3091–3098.

    PubMed  Google Scholar 

  86. Hiscott, P., Sheridan, C., Magee, R.M., and Grierson, I., Matrix and the retinal pigment epithelium in proliferative retinal disease, Prog. Ret. Eye Res., 1999, vol. 18, pp. 167–190.

    Article  CAS  Google Scholar 

  87. Holliday, R., Epigenetics: a historical overview, Epigenetics, 2006, vol. 1, pp. 76–80.

    Article  PubMed  Google Scholar 

  88. Hu, J. and Bok, D., A cell culture medium that supports the differentiation of human retinal pigment epithelium into functionally polarized monolayers, Mol. Vis., 2001, vol. 7, pp. 14–19.

    CAS  PubMed  Google Scholar 

  89. Hua, X., Liu, X., Ansari, D.O., and Lodish, H.F., Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene, Genes Dev., 1998, vol. 12, pp. 3084–3095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang, X., Wei, Y., Ma, H., and Zhang, S., Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells, Biochem. Biophys. Res. Commun., 2012, vol. 419, no. 2, pp. 395–400.

    Article  CAS  PubMed  Google Scholar 

  91. Idrees, S., Sridhar, J., and Kuriyan, A.E., Proliferative vitreoretinopathy: a review, Int. Ophthalmol. Clin., 2019, vol. 59, no. 1, pp. 221–240.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Imamichi, Y. and Menke, A., Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial-mesenchymal transition, Cells Tissues Organs, 2007, vol. 185, nos. 1–3, pp. 180–190.

    Article  CAS  PubMed  Google Scholar 

  93. Ishida, W., Mori, Y., Lakos, G., et al., Intracellular TGF-β receptor blockade abrogates smad-dependent fibroblast activation in vitro and in vivo, J. Invest. Dermatol., 2006, vol. 126, no. 8, pp. 1733–1744.

    Article  CAS  PubMed  Google Scholar 

  94. Islam, M.R., Nakamura, K., Casco-Robles, M.M., et al., The newt reprograms mature RPE cells into a unique multipotent state for retinal regeneration, Sci. Rep., 2014, vol. 4, p. 6043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Itoh, Y., Kimoto, K., Imaizumi, M., and Nakatsuka, K., Inhibition of RhoA/Rho-kinase pathway suppresses the expression of type I collagen induced by TGF-beta2 in human retinal pigment epithelial cells, Exp. Eye Res., 2007, vol. 84, no. 3, pp. 464–472.

    Article  CAS  PubMed  Google Scholar 

  96. Jopling, C., Sleep, E., Raya, M., et al., Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation, Nature, 2010, vol. 464, pp. 606–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jopling, C., Boue, S., and Ispizua, B.J.C., Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration, Nat. Rev. Mol. Cell Biol., 2011, vol. 12, pp. 79–89.

    Article  CAS  PubMed  Google Scholar 

  98. Kandyba, E., Leung, Y., Chen, Y.B., Widelitz, R., Chuong, C.M., et al., Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 1351–1356. https://doi.org/10.1073/pnas.1121312110

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kaneko, J. and Chiba, Ch., Immunohistochemical analysis of Musashi-1 expression during retinal regeneration of adult newt, Neurosci. Lett., 2009, vol. 450, pp. 252–257.

    Article  CAS  PubMed  Google Scholar 

  100. Kaneko, Y., Matsumoto, G., and Hanyu, Y., The occurrence of apoptosis during retinal regeneration in adult newts, Brain Res. Dev. Brain Res., 1999, vol. 117, no. 2, pp. 225–228.

    Article  CAS  PubMed  Google Scholar 

  101. Kaneko, Y., Hirota, K., Matsumoto, G., and Hanyu, Y., Expression pattern of a newt Notch homologue in regenerating newt retina, Brain Res Dev. Brain Res., 2001, vol. 31, pp. 1, 53–62, 128.

  102. Kang, Y. and Massague, J., Epithelial-mesenchymal transitions: twist in development and metastasis, Cell, 2004, vol. 118, pp. 277–279.

    Article  CAS  PubMed  Google Scholar 

  103. Keefe, J.R., An analysis of urodelean retinal regeneration, J. Exp. Zool., 1973, vol. 184, pp. 185–257.

    Article  CAS  PubMed  Google Scholar 

  104. Kigasawa, K., Ishirawa, H., Obazawa, H., Minamoto, T., Nagai, Y., and Tanaka, Y., Collagen production by cultured human retinal pigment epithelial cells, Tokai J. Exp. Clin. Med., 1998, vol. 23, no. 3, pp. 147–151.

    CAS  PubMed  Google Scholar 

  105. Kiilgaard, J.F., Prause, J.U., Prause, M., et al., Subretinal posterior pole injury induces selective proliferation of RPE cells in the periphery in in vivo studies in pigs, Invest. Ophthalmol. Vis. Sci., 2007, vol. 48, no. 1, pp. 355–360.

    Article  PubMed  Google Scholar 

  106. Kimoto, K., Nakatsuka, K., Matsuo, N., and Yoshioka, H., p38 MAPK mediates the expression of type I collagen induced by TGF-beta 2 in human retinal pigmented epithelial cells ARPE-19, Invest. Ophthalmol. Vis. Sci., 2004, vol. 45, pp. 2431–2437.

    Article  PubMed  Google Scholar 

  107. Kimura, Y., Madhavan, M., Call, M.K., et al., Expression of complement 3 and complement 5 in newt limb and lens regeneration, J. Immunol., 2003, vol. 170, pp. 2331–2339.

    Article  CAS  PubMed  Google Scholar 

  108. Kirchhof, B. and Sorgente, N., Pathogenesis of proliferative vitreoretinopathy. Modulation of retinal pigment epithelial cell functions by vitreous and macrophages, Dev. Ophthalmol., 1989, vol. 16, pp. 1–53.

    Article  CAS  PubMed  Google Scholar 

  109. Kita, T., Hata, Y., Arita, R., Kawahara, S., Miura, M., Nakao, S., Mochizuki, Y., Enaida, H., Goto, Y., Shimokawa, H., Hafezi-Moghadam, A., and Ishibashi, T., Role of TGF-beta in proliferative vitreoretinal diseases and rock as a therapeutic target, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 17504–17509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Korthagen, N.M., van Bilsen, K., Swagemakers, S.M., van de Peppel, J., Bastiaans, J., van der Spek, P.J., van Hagen, P.M., and Dik, W.A., Retinal pigment epithelial cells display specific transcriptional responses upon TNF-alpha stimulation, Br. J. Ophthalmol., 2015, vol. 99, pp. 700–704.

    Article  PubMed  Google Scholar 

  111. Kuznetsova, A.V., Grigoryan, E.N., and Aleksandrova, M.A., Human adult retinal pigment epithelial cells as potential cell source for retina recovery, Cell Tissue Biol., 2011, vol. 5, no. 5, pp. 495–502.

    Article  Google Scholar 

  112. Kuznetsova, A.V., Kurinov, A.M., and Aleksandrova, M.A., Cell models to study regulation of cell transformation in pathologies of retinal pigment epithelium, J. Ophthalmol., 2014, vol. 2014. https://doi.org/10.1155/2014/801787

  113. Lazarus, H. and Hageman, G., Xyloside-induced disruption of inferphororeceptor matrix proteoglycans results in retinal detachment, Invest. Ophthalmol. Vis. Sci., 1992, vol. 33, no. 2, pp. 364–376.

    CAS  PubMed  Google Scholar 

  114. Lee, S.C., Kwon, O.W., Seong, G.J., et al., Epithelio–mesenchymal transdifferentiation of cultured RPE cells, Ophthalmic Res., 2001, vol. 33, pp. 80–86.

    Article  CAS  PubMed  Google Scholar 

  115. Lee, H., O’Meara, S.J., O’Brien, C., and Kane, R., The role of gremlin, a bmp antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy, Invest. Ophthalmol. Vis. Sci., 2007, vol. 48, pp. 4291–4299.

    Article  PubMed  Google Scholar 

  116. Li, J., Tang, X., and Chen, X., Comparative effects of TGF-β2/Smad2 and TGFβ2/Smad3 signaling pathways on proliferation, migration, and extracellular matrix production in a human lens cell line, Exp. Eye. Res., 2011, vol. 92, pp. 173–179.

    Article  CAS  PubMed  Google Scholar 

  117. Li, M., Li, H., Liu, X., et al., MicroRNA-29b regulates TGF-β1-mediated epithelial- mesenchymal transition of retinal pigment epithelial cells by targeting AKT2, Exp. Cell Res., 2016, vol. 345, pp. 115–124.

    Article  CAS  PubMed  Google Scholar 

  118. Li, S., Zhang, H., Wang, A., et al., Differentiation of adult human retinal pigment epithelial cells into dopaminergic-like cells in vitro and in the recipient monkey brain, Mol. Med., 2019, vol. 25, p. 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lopashov, G.V. and Stroeva, O.G., Morphogenesis of the vertebrate eye, in Advances in Morphogenesis, New York, USA: Academic, 1961, vol. 1, pp. 231–377.

    Google Scholar 

  120. Lopashov, G.V. and Stroeva, O.G., Razvitie glaza v svete eksperimental’nykh issledovanii (Eye Development in the Light of Experimental Research), Moscow: Akad. Nauk SSSR. 1963.

  121. Lopez, P.F., Yan, Q., Kohen, L., et al., Retinal pigment epithelial wound healing in vivo, Arch. Ophthalmol., 1995, vol. 113, pp. 1437–1446.

    Article  CAS  PubMed  Google Scholar 

  122. Lynn, S.A., Gareth, W., Keeling, E., Scott, J.A., Cree, A.J., Johnston, D.A., Page, A., Cuan-Urquizo, E., Bhaskar, A., Grossel, M.C., Tumbarello, D.A., Newman, T.A., Lotery, A.J., and Ratnayaka, J.A., Ex-vivo models of the retinal pigment epithelium (RPE) in long-term culture faithfully recapitulate key structural and physiological features of native RPE, Tissue Cell, 2017, vol. 49, pp. 447–460.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Maeda, M., Johnson, K.R., and Wheelock, M.J., Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition, J. Cell Sci., 2005, vol. 118, pp. 873–887.

    Article  CAS  PubMed  Google Scholar 

  124. Maki, N., Suetsugu-Maki, R., Tarui, H., Agata, K., Del Rio-Tsonis, K., and Tsonis, P.A., Expression of stem cell pluripotency factors during regeneration in newts, Dev. Dyn., 2009, vol. 238, no. 6, pp. 1613–1616. https://doi.org/10.1002/dvdy.21959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Markitantova, Yu.V. and Simirskii, V.N., Inherited retinal diseases through the eyes of homeobox genes, Int. J. Mol. Sci., 2020, vol. 21, no. 5, p. 1602. https://doi.org/10.3390/ijms21051602

    Article  CAS  PubMed Central  Google Scholar 

  126. Markitantova, Yu.V. and Simirskii, V.N., Role of the redox system in initiation of a regenerative response of neural eye tissues in vertebrates, Russ. J. Dev. Biol., 2020, vol. 51, no. 1, pp. 16–30.https://doi.org/10.1134/S106236042001004X

    Article  Google Scholar 

  127. Markitantova, Yu., Makariev, E., Pavlova, G., Zinovieva, R.D., and Mitashov, V., Location of the prox1 gene expression during newt lens and retina regeneration, Dokl. Biol. Sci., 2003, vol. 391, no. 4, pp. 361–364.https://doi.org/10.1023/A:1025119121348

    Article  CAS  PubMed  Google Scholar 

  128. Markitantova, Yu.V., Makar’ev, E.O., Smirnova, Yu.A., Zinov’eva, R.D., and Mitashov, V.I., Analysis of the expression pattern of regulatory genes pax6, prox1, and six3 during regeneration of eye structures in the newt, Biol. Bull. (Moscow), 2004, vol. 31, no. 5, pp. 428–436.

    Article  CAS  Google Scholar 

  129. Markitantova, Yu.V., Avdonin, P.P., Grigoryan, E.N., and Zinovieva, R.D., Identification of the pitx1 embryogenesis regulatory gene in a regenerating newt retina, Dokl. Biol. Sci., 2010, vol. 435, no. 1, pp. 421–424. https://doi.org/10.1134/S0012496610060141

    Article  PubMed  Google Scholar 

  130. Markitantova, Yu.V., Avdonin, P.P., and Grigoryan, E.N., Nucleostemin expression in the process of reprogramming of pigment epithelium cells in situ during retinal regeneration in an adult newt, Tsitologiya, 2014, vol. 56, no. 9, pp. 671–672.

    Google Scholar 

  131. Markitantova, Yu.V., Avdonin, P.P., and Grigoryan, E.N., Identification of the gene encoding nucleostemin in the eye tissues of Pleurodeles waltl, Biol. Bull. (Moscow), 2015a, vol. 42, no. 5, pp. 379–386.

    Article  CAS  Google Scholar 

  132. Markitantova, Yu.V., Poplinskaya, V.A., and Grigoryan, E.N., Reorganization of chromatin in the process of reprogramming of the pigment epithelium during the regeneration of the retina of newt, in Materialy mezhdunarodnoi konferentsii Khromosoma-2015 (Proceeding of the International Conference “Chromosome-2015”), 2015b, pp. 123–124.

  133. Markitantova, Yu.V., Avdonin, P.P., and Grigoryan, E.N., FGF2 signaling pathway components in tissues of the posterior eye sector in the adult newt Pleurodeles waltl, Biol. Bull. (Moscow), 2014, vol. 41, pp. 297–305.

    Article  CAS  Google Scholar 

  134. Markitantova, Y.V., Novikova, Y.P., Poplinskaya, V.A., and Grigoryan, E.N., Expression of FGF2 and nucleostemin in models of retinal regeneration in the newt under conditions of 3D organotypic culture in vitro, EC Ophthalmol., 2020, vol. 10, no. 12, pp. 01–09. https://doi.org/10.31080/ecop.2020.11.00580

  135. Mercer, S.E., Cheng, C.-H., Atkinson, D.L., Krcmery, J., Guzman, C.E., Kent, D.T., et al., Multi-tissue microarray analysis identifies a molecular signature of regeneration, PLoS One, 2012, vol. 7, no. e52375. https://doi.org/10.1371/journal.pone.0052375

  136. Merell, A.J. and Stanger, B.Z., Adult cell plasticity in vivo: transdifferentiation is back in style, Nat. Rev. Mol. Cell Biol., 2016, vol. 17, no. 7, pp. 413–425.

    Article  CAS  Google Scholar 

  137. Meyers, J.R., Hu, L., Moses, A., et al., β-Catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina, Neural Dev., 2012, vol. 24, no. 7, p. 30.

    Article  Google Scholar 

  138. Mills, J.C., Stanger, B.Z., and Sander, M., Nomenclature for cellular plasticity: are the terms as plastic as the cells themselves?, EMBO J., 2019, vol. 38. e103148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Milyushina, L.A., Kuznetsova, A.V., Grigoryan, E.N., and Aleksandrova, M.A., Phenotypic plasticity of retinal pigment epithelium cells of adult human eye in vitro, Klet. Tekhnol. Biol. Med., 2009, vol. 2, pp. 71–76.

    Google Scholar 

  140. Milyushina, L.A., Kuznetsova, A.V., Grigoryan, E.N., and Aleksandrova, M.A., Phenotypic plasticity of retinal pigment epithelial cells from adult human eye in vitro, Bull. Exp. Biol. Med., 2011, vol. 151, no. 4, pp. 506–511.

    Article  CAS  PubMed  Google Scholar 

  141. Milyushina, L.A., Verdiev, B.I., Kuznetsova, A.V., and Aleksandrova, M.A., Expression of multipotent and retinal markers in pigment epithelium of adult human in vitro, Bull. Exp. Biol. Med., 2012, vol. 153, p. 157.

    Article  CAS  PubMed  Google Scholar 

  142. Mirabella, A.C., Foster, B.M., and Bartke, T., Chromatin deregulation in disease, Chromosoma, 2016, vol. 125, pp. 75–93.

    Article  CAS  PubMed  Google Scholar 

  143. Mitashov, V.I., Dynamics of DNA synthesis in the pigment epithelium in the process of eye regeneration after surgical removal of the retina in adult northern crested newt (Triturus cristatus), Tsitologiia, 1969a, vol. 11, no. 4, pp. 434–446.

    CAS  PubMed  Google Scholar 

  144. Mitashov, V.I., Characteristics of mitotic cycles of pigment epithelial cells and retinal rudiment in adult newts (Triturus cristatus, Triturus taeniatus), Dokl. Akakd. Nauk SSSR, 1969b, vol. 189, no. 3, pp. 666–669.

    CAS  Google Scholar 

  145. Mitashov, V.I., Dynamics of DNA synthesis in the pigment epithelium cells of adult newts during the restoration of the eye after transection of the optic nerve and blood vessels, Tsitologiia, 1970, vol. 12, no. 12, pp. 1521–1529.

    CAS  PubMed  Google Scholar 

  146. Mitashov, V.I., Proliferation of retinal pigment epithelium cells of adult newts in the late stages of regeneration of the removed retina, Ontogenez, 1974, vol. 5, no. 1, pp. 80–83.

    Google Scholar 

  147. Mitashov, V.I., Patterns of changes in mitotic cycles during cell transformation and regeneration in lower vertebrates, Tsitologiia, 1980, vol. 2, pp. 371–380.

    Google Scholar 

  148. Mitashov, V.I., Arsanto, J.P., Markitantova, Y.V., and Thouveny, Y., Remodelling processes during neural retina regeneration in adult urodeles: an immunohistochemical survey, Int. J. Dev. Biol., 1995a, vol. 39, pp. 993–1003.

    CAS  PubMed  Google Scholar 

  149. Mitashov, V.I., Mechanisms of retina regeneration in vertebrates, Int. J. Dev. Biol., 1996, vol. 40, pp. 833–844.

    CAS  PubMed  Google Scholar 

  150. Mitashov, V.I., Retinal regeneration in amphibians, Int. J. Dev. Biol., 1997, vol. 41, pp. 893–905.

    CAS  PubMed  Google Scholar 

  151. Mitashov, V.I., Expression of regulatory and tissue-specific genes controlling regenerative potencies of eye tissues in vertebrates, Russ. J. Dev. Biol., 2007, vol. 38, no. 4, pp. 198–205.

    Article  Google Scholar 

  152. Mizuno, A., Yasumuro, H., Yoshikawa, T., et al., MEK-ERK signaling in adult newt retinal pigment epithelium cells is strengthened immediately after surgical induction of retinal regeneration, Neurosci. Lett., 2012, vol. 523, pp. 39–44.

    Article  CAS  PubMed  Google Scholar 

  153. Morescalchi, F., Duse, S., Gambicorti, E., et al., Proliferative vitreoretinopathy after eye injuries: an overexpression of growth factors and cytokines leading to a retinal keloid, Mediators Inflamm., 2013, p. 269787.

  154. Nakamura, K. and Chiba, Ch., Evidence for Notch signaling involvement in retinal regeneration of adult newt, Brain Res., 2007, vol. 1136, no. 1, pp. 28–42. https://pubmed.ncbi.nlm.nih.gov/17217933/–affiliation-1

    Article  CAS  PubMed  Google Scholar 

  155. Nakamura, K., Islam, Md.R., Takayanagi, M., et al., Transcriptome for the study of early processes of retinal regeneration in the adult newt Cynops pyrrhogaster, PLoS One, 2014, vol. 9, no. 10, e109831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Nazarieh, M., Wiese, A., Will, T., Hamed, M., and Helms, V., Identification of key player genes in gene regulatory networks, BMC Syst. Biol., 2016, vol. 10, p. 88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Nieto, M.A., The ins and outs of the epithelial to mesenchymal transition in health and disease, Annu. Rev. Cell Dev. Biol., 2011, vol. 27, pp. 347–376. https://doi.org/10.1146/annurev-cellbio-092910-154036

    Article  CAS  PubMed  Google Scholar 

  158. Nikolaev, A.A., Epigenetic features of pigment epithelium reprogramming during retinal regeneration after photoinduced detachment in Pleurodeles waltl newt, Bachelor’s Final Qualification Work, Moscow: Moscow State Univ., 2018.

    Google Scholar 

  159. Nikolaev, A.A., Markitantova, Yu.V., and Grigoryan, E.N., Characterization of some molecular genetic and epigenetic events during retinal regeneration in Urodella by reprogramming RPE, Geny Kletki, 2017, vol. 12, no. 3, p. 178.

    Google Scholar 

  160. Novikova, I.P., Poplinskaia, V.A., Aleinikova, K.S., and Grigorian, E.N., A study of the localization and accumulation of S-phase cells in the retina of newt Pleurodeles waltl after experimental pigment epithelial detachment, Russ. J. Dev. Biol., 2008, vol. 39, pp. 116–121.

    Article  Google Scholar 

  161. Nowoshilow, S., Schloissnig, S., Fei, J.F., et al., The axolotl genome and the evolution of key tissue formation regulators, Nature, 2018, vol. 554, pp. 50–55.

    Article  CAS  PubMed  Google Scholar 

  162. Okada, T.S., “Transdifferentiation” of cells from chick embryonic eye tissues in cell culture, Dev. Growth Differ., 1975, vol. 17, pp. 289–290.

    Article  Google Scholar 

  163. Okada, T.S., Cellular metaplasia or transdifferentiation as a model for retinal cell differentiation, Curr. Top. Dev. Biol., 1980, vol. 16, pp. 349–380.

    Article  CAS  PubMed  Google Scholar 

  164. Okada, T.S., Transdifferentiation, Oxford: Clarendon Press, 1991.

    Google Scholar 

  165. Oliver, V.F., van Bysterveldt, K.A., and Merbs, S.L., Epigenetics in ocular medicine, in Medical Epigenetics, Academic Press, 2016, Ch. 22, pp. 391–412.

    Google Scholar 

  166. Pannu, J., Nakerakanti, S., Smith, E., Ten, DijkeP., and Trojanowska, M., Transforming growth factor-β receptor type I dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways, J. Biol. Chem., 2007, vol. 282, no. 14, pp. 10405–10413.

    Article  CAS  PubMed  Google Scholar 

  167. Panova, I.G., Interphotoreceptor matrix: development, composition and functional significance, Ontogenez, 1994, vol. 25, no. 1, pp. 5–12.

    CAS  PubMed  Google Scholar 

  168. Panova, I.G., Cytostructure and cytochemistry of retinal pigment epithelium, Izv. Ross. Akad. Nauk, Ser. Biol., 1993, no. 2, pp. 165–190.

  169. Parmeggiani, F., Campa, C., Costagliola, C., et al., Inflammatory mediators and angiogenic factors in choroidal neovascularization: pathogenetic interactions and therapeutic implications, Mediators Inflamm., 2010: 546826.

  170. Pastor, J.C., de la Rua, E.R., and Martin, F., Proliferative vitreoretinopathy: risk factors and pathobiology, Prog. Retin. Eye. Res., 2002, vol. 21, pp. 127–144.

    Article  PubMed  Google Scholar 

  171. Pastor, J.C., Rojas, J., Pastor-Idoate, S., et al., Proliferative vitreoretinopathy: a new concept of disease pathogenesis and practical consequences, Prog. Ret. Eye Res., 2016, vol. 51, pp. 125–155.

    Article  Google Scholar 

  172. Philp, N.J. and Nachmias, V.T., Polarized distribution of integrin and fibronectin in retinal pigment epithelium, Invest. Ophthalmol. Vis. Sci., 1987, vol. 28, no. 8, pp. 1275–1280.

    CAS  PubMed  Google Scholar 

  173. Popova, E.Y. and Barnstable, C.J., Insights into the epigenetics of retinal development and diseases, chapter 15 in Epigenetic and Regeneration, vol. 11 of Translational Epigenetics, Academic Press, 2019, pp. 355–383.

  174. Powell, C., Grant, A.R., Cornblath, E., and Goldman, D., Analysis of DNA methylation reveals a partial reprogramming of the Müller glia genome during retina regeneration, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 19814–19819.

  175. Pratt Craig, H., Vadigepalli, R., Chakravarthula, P., Gonye, G.E., Philp, N.J., and Grunwald, G.B., Transcriptional regulatory network analysis during epithelial–mesenchymal transformation of retinal pigment epithelium, Mol. Vis., 2008, vol. 14, pp. 1414–1428.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Qu, K., Xu, X., Liu, C., Wu, Q., Wei, J., et al., Negative regulation of transcription factor FoxM1 by p53 enhances oxaliplatin-induced senescence in hepatocellular carcinoma, Cancer Lett., 2013, vol. 331, pp. 105–114.https://doi.org/10.1016/j.canlet.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  177. Rattner, A., Toulabi, L., Williams, J., et al., The genomic response of the retinal pigment epithelium to light damage and retinal detachment, J. Neurosci., 2008, vol. 28, pp. 9880–9889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Remé, C., Grimm, C. Hafezi, F., et al., Why study rod cell death in retinal degenerations and how?, Docum. Ophthalmol., 2003, vol. 106, no. 1, pp. 25–29.

    Article  Google Scholar 

  179. Roybal, C.N., Velez, G., Toral, M.A., Tsang, S.H., Bassuk, A.G., and Mahajan, V.B., Personalized proteomics in proliferative vitreoretinopathy implicate hematopoietic cell recruitment and mTOR as a therapeutic target, Am. J. Ophthalmol., 2018, vol. 186, pp. 152–163.

    Article  CAS  PubMed  Google Scholar 

  180. Rzhanova, L.A., Kuznetsova, A.V., and Aleksandrova, M.A., Reprogramming of differentiated mammalian and human retinal pigment epithelium: current achievements and prospects, Russ. J. Dev. Biol., 2020, vol. 51, no. 4, pp. 212–230.

    Article  Google Scholar 

  181. Saika, S., Kono-Saika, S., Tanaka, T., et al., Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice, Lab. Invest., 2004, vol. 84, pp. 1245–1258.

    Article  CAS  PubMed  Google Scholar 

  182. Saika, S., Yamanaka, O., Nishikawa-Ishida, I., et al., Effect of Smad7 gene overexpression on transforming growth factor beta-induced retinal pigment fibrosis in a proliferative vitreoretinopathy mouse model, Arch. Ophthalmol., 2007, vol. 125, pp. 647–654.

    Article  CAS  PubMed  Google Scholar 

  183. Saika, S., Yamanaka, O., Okada, Y., et al., TGFβ in fibroproliferative diseases in the eye, Front. Biosci., Scholar, 2009, vol. 1, no. 1, pp. 376–390.

    Google Scholar 

  184. Saini, J.S., Corneo, B., Miller, J.D., Kiehl, T.R., Wang, Q., Boles, N.C., Blenkinsop, T.A., Stern, J.H., and Temple, S., Nicotinamide ameliorates disease phenotypes in a human iPSC model of age-related macular degeneration, Cell Stem Cell, 2017, vol. 20, pp. 635–647. е7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sakami, S., Hisatomi, O., Sakakibara, S., and Liu, J., Downregulation of Otx2 in the dedifferentiated RPE cells of regenerating newt retina, Dev. Brain Res., 2005, vol. 155, pp. 49–59.

    Article  CAS  Google Scholar 

  186. Salero, E., Blenkinsop, T.A., Corneo, B., et al., Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives, Cell Stem Cell, 2012, vol. 10, pp. 88–95.

    Article  CAS  PubMed  Google Scholar 

  187. Schiff, L., Boles Nathan, C., Fernandes, M., Nachmani, B., Gentile, R., and Blenkinsop, T.A., P38 inhibition reverses TGFβ1 and TNFα-induced contraction in a model of proliferative vitreoretinopathy, Commun. Biol., 2019, vol. 2, p. 162. https://doi.org/10.1038/s42003-019-0406-6

  188. Schmidt, S.Y. and Peisch, R.D., Melanin concentration in normal human retinal pigment epithelium. Regional variation and age-related reduction, Invest. Ophthalmol. Vis. Sci., 1986, vol. 27, pp. 1063–1067.

    CAS  PubMed  Google Scholar 

  189. Shafei, E.V., Kurinov, A.M., Kuznetsova, A.V., and Aleksandrova, M.A., Reprogramming of human retinal pigment epithelial cells under the effect of bFGF in vitro, Bull. Exp. Biol. Med., 2017, vol. 163, pp. 574–582. https://doi.org/10.1007/s10517-017-3852-5

    Article  CAS  PubMed  Google Scholar 

  190. Shafei, E.V., Rzhanova, L.A., Novikova, Yu.P., Kurinov, A.M., Grigoryan, E.N., Aleksandrova, M.A., and Kuznetsova, A.V., Response of human retinal pigment epithelial cells to the effect of the conditioned media of newt retinal regenerates, Cell Tissue Biol., 2021, vol. 15, no. 2, pp. 135–149.

    Article  Google Scholar 

  191. Sherpa, T., Lankford, T., McGinn, T.E., Hunter, S.S., Frey, R.A., Sun, Chi., Ryan, M., Robison, B.D., and Stenkamp, D.L., Retinal regeneration is facilitated by the presence of surviving neurons, Dev. Neurobiol., 2014, vol. 74, pp. 851–876.https://doi.org/10.1002/dneu.22167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Shu, D.Y. and Lovicu, F.J., Myofibroblast transdifferentiation: the dark force in ocular wound healing and fibrosis, Prog. Ret. Eye Res., 2017, vol. 60, pp. 44–65.

    Article  Google Scholar 

  193. Sinitsina, V.F., DNA synthesis and kinetics of cell populations during embryonic histogenesis of the mouse retina, Arkh. Anat., Gistol., Embriol., 1971, vol. 61, no. 6, pp. 58–67.

    CAS  Google Scholar 

  194. Sousounis, K., Looso, M., Maki, N., Ivester, C.J., Braun, T., and Tsonis, P.A., Transcriptome analysis of newt lens regeneration reveals distinct gradients in gene expression patterns, PLoS One, 2013, vol. 8, no. 4, p. e61445. https://doi.org/10.1371/journal.pone.0061445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sparrow, J.R., Hicks, D., and Hamel, C.P., The retinal pigment epithelium in health and disease, Curr. Mol. Med., 2010, vol. 10, pp. 802–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Spraul, C.W., Kaven, C., Lang, G.K., and Lang, G.E., Effect of growth factors on bovine retinal pigment epithelial cell migration and proliferation, Ophthalmic Res., 2004, vol. 36, pp. 166–171.

    Article  CAS  PubMed  Google Scholar 

  197. Stern, J. and Temple, S., Retinal pigment epithelial cell proliferation, Exp. Biol. Med. (Maywood), 2015, vol. 240, no. 8, pp. 1079–1086.

    Article  CAS  Google Scholar 

  198. Stevenson, B.R., Siliciano, J.D., Mooseker, M.S., and Goodenough, D.A., Identification of  ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia, J. Cell Biol., 1986, vol. 103, pp. 755–766.

    Article  CAS  PubMed  Google Scholar 

  199. Stewart, S., Gomez, A.W., Armstrong, B.E., Henner, A., and Stankunas, K., Sequential and opposing activities of Wnt and BMP coordinate zebrafish bone regeneration, Cell Rep., 2014, vol. 6, pp. 482–498. https://doi.org/10.1016/j.celrep.2014.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Stocks, S.Z., Taylor, S.M., and Shiels, I.A., Transforming growth factor-beta1 induces alpha-smooth muscle actin expression and fibronectin synthesis in cultured human retinal pigment epithelial cells, Clin. Exp. Ophthalmol., 2001, vol. 29, pp. 33–37.

    Article  CAS  PubMed  Google Scholar 

  201. Strauss, O., The retinal pigment epithelium in visual function, Physiol. Rev., 2005, vol. 85, no. 3, pp. 845–888.

    Article  CAS  PubMed  Google Scholar 

  202. Stroeva, O.G., Hereditary and exogenous retinal colobomas and normal eye morphogenesis, Zh. Obshch. Biol., 1961, vol. 22, no. 436–443.

  203. Stroeva, O.G., Transformation of pigment epithelium into retina at advanced stages of rat embryogenesis, Dokl. Akad. Nauk SSSR, 1962, vol. 143, pp. 991–993.

    Google Scholar 

  204. Stroeva, O.G., Morfogenez i vrozhdennye anomalii glaza mlekopitayushchikh (Morphogenesis and Congenital Anomalies of the Mammalian Eye), Moscow: Nauka, 1971.

  205. Stroeva, O.G. and Mitashov, V.I., Differentiation and dedifferentiation of pigmented parts of the eye of vertebrates in metaplasia, in Metaplaziya tkanei (Tissue Metaplasia), Moscow: Nauka, 1970, pp. 93–105.

  206. Stroeva, O.G. and Mitashov, V.I., Developmental potential of vertebrate eye tissues in regeneration of retina and lens, in Problems of Developmental Biology, Moscow: Mir, 1981, pp. 168–207.

  207. Stroeva, O.G. and Mitashov, V.I., Retinal pigment epithelium: proliferation and differentiation during development and regeneration, Int. Rev. Cytol., 1983, vol. 83, pp. 221–293.

    Article  CAS  PubMed  Google Scholar 

  208. Strunnikova, N.V., Maminishkis, A., and Barb, J.J., Transcriptome analysis and molecular signature of human retinal pigment epithelium, Hum. Mol. Genet., 2010, vol. 19, pp. 2468–2486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sun, S. and Fang, J., Epigenetic regulation of epithelial–mesenchymal transition, Cell Mol. Life Sci., 2016, vol. 73, no. 23, pp. 4493–4515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Susaki, K. and Chiba, C., Pigment MEK mediates in vitro neural transdifferentiation of the adult newt retinal pigment epithelium cells: is FGF2 an induction factor?, Cell Res., 2007, vol. 20, no. 5, pp. 364–379. https://doi.org/10.1111/j.1600-0749.2007.00407.x

    Article  CAS  Google Scholar 

  211. Svistunov, S.A. and Mitashov, V.I., Radioautographic study of retinal pigment epithelial cell proliferation in albino Xenopus, Ontogenez, 1983, vol. 14, pp. 382–389.

    CAS  PubMed  Google Scholar 

  212. Szibor, M., Poling, J., Warnecke, H., et al., Remodeling and dedifferentiation of adult cardiomyocytes during disease and regeneration, Cell Mol. Life Sci., 2014, vol. 71, pp. 1907–1916.

    Article  CAS  PubMed  Google Scholar 

  213. Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, vol. 126, pp. 663–676.

    Article  CAS  PubMed  Google Scholar 

  214. Takahashi, E., Nagano, O., Ishimoto, T., Yae, T., Suzuki, Y., Shinoda, T., Nakamura, S., Niwa, S., Ikeda, S., Koga, H., et al., Tumor necrosis factor-alpha regulates transforming growth factor-beta-dependent epithelial-mesenchymal transition by promoting hyaluronan-CD44-moesin interaction, J. Biol. Chem., 2010, vol. 285, pp. 4060–4073.

    Article  CAS  PubMed  Google Scholar 

  215. Tamiya, S., Liu, L, and Kaplan, H.J., Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell–cell contact, Invest. Ophthalmol. Vis. Sci., 2010, vol. 51, pp. 2755–2763.

    Article  PubMed  Google Scholar 

  216. Tamiya, S. and Kaplan, H.J., Role of epithelial–mesenchymal transition in proliferative vitreoretinopathy, Exp. Eye Res., 2016, vol. 142, pp. 26–31.

    Article  CAS  PubMed  Google Scholar 

  217. Tapscott, S.J., Davis, R.L., Thayer, M.J., et al., MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts, Science, 1988, vol. 242, pp. 405–411.

    Article  CAS  PubMed  Google Scholar 

  218. Tapscott, S.J. and Weintraub, H., Myod and the regulation of myogenesis by helix–loop–helix proteins, J. Clin. Invest., 1991, vol. 87, no. 4, pp. 1133–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Thiery, J.P. and Sleeman, J.P., Complex networks orchestrate epithelial-mesenchymal transitions, Nat. Rev. Mol. Cell Biol., 2006, vol. 7, pp. 131–142.

    Article  CAS  PubMed  Google Scholar 

  220. Tosi, G.M., Marigliani, D., Romeo, N., and Toti, P., Disease pathways in proliferative vitreoretinopathy: an ongoing challenge, J. Cell Physiol., 2014, vol. 229, pp. 1577–1583.

    Article  CAS  PubMed  Google Scholar 

  221. Uehara, F., Ohba, N., and Ozawa, M., Isolation and characterization of galectins in the mammalian retina, Invest. Ophthalmol. Vis. Sci., 2001, vol. 42, pp. 2164–2172.

    CAS  PubMed  Google Scholar 

  222. Vaajasaari, H., Ilmarinen, T., Juuti-Uusitalo, K., Rajala, K., Onnela, N., et al., Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells, Mol. Vis., 2011, vol. 17, pp. 558–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Vadigepalli, R., Chakravarthula, P., Zak, D.E., Schwaber, J.S., and Gonye, G.E., PAINT: a promoter analysis and interaction network generation tool for gene regulatory network identification, OMICS, 2003, vol. 7, pp. 235–252.

    Article  CAS  PubMed  Google Scholar 

  224. VandenBosch, L.S. and Reh, T.A., Epigenetics in neuronal regeneration, Sem. Cell. Dev. Biol., 2020, vol. 97, pp. 63–73.

  225. Veldman, M.B., Bemben, M.A., Thompson, R.C., and Goldman, D., Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration, Dev. Biol., 2007, vol. 312, pp. 596–612.

    Article  CAS  PubMed  Google Scholar 

  226. Venters, B.J. and Pugh, B.F., How eukaryotic genes are transcribed, Crit. Rev. Biochem. Mol. Biol., 2009, vol. 44, nos. 2–3, pp. 117–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Wang, Y. and Shang, Y., Epigenetic control of epithelial-to-mesenchymal transition and cancer metastasis, Exp. Cell Res., 2013, vol. 319, no. 2, pp. 160–169.

    Article  CAS  PubMed  Google Scholar 

  228. Wang, I.C., Chen, Y.J., Hughes, D., Petrovic, V., Major, M.L., et al., Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase, Mol. Cell. Biol., 2005, vol. 25, pp. 10875–10894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Weintraub, H., Tapscott, S.J., and Davis, R.L., Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD, Proc. Natl. Acad. Sci. U. S. A., 1989, vol. 86, no. 14, pp. 5434–5438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Weissenfels, N. and Hündgen, M., Changing adenosine triphosphatase activity in nuclei of cultured chicken heart myoblasts during their transdifferentiation, Histochemie, 1968, vol. 16, pp. 119–133.

    Article  CAS  PubMed  Google Scholar 

  231. Wiedemann, P., Growth factors in retinal disease: proliferative vitreoretinopathy, proliferative diabetic retinopathy, and retinal degeneration, Surv. Ophthalmol., 1992, vol. 36, pp. 373–384.

    Article  CAS  PubMed  Google Scholar 

  232. Wu, J., Chen, X., Liu, X., et al., Autophagy regulates TGF-beta2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells, Mol. Med. Rep., 2018, vol. 17, pp. 3607–3614.

    CAS  PubMed  Google Scholar 

  233. Xiao, W., Chen, X., Liu, X., et al., Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial–mesenchymal transition in retinal pigment epithelium cells, Cell Mol. Med., 2014, vol. 18, no. 4, pp. 646–655.

    Article  CAS  Google Scholar 

  234. Xue, J., Lin, X., Chiu, W.T., Chen, Y.H., Yu, G., et al., Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-beta-dependent cancer metastasis, J. Clin. Invest., 2014, vol. 124, pp. 564–579. https://doi.org/10.1172/JCI71104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Yan, X., Liu, Z., and Chen, Y., Regulation of TGF-β signaling by Smad7, Acta Biochim. Biophys. Sin., 2009, vol. 41, no. 4, pp. 263–272.

    Article  CAS  PubMed  Google Scholar 

  236. Yang, S., Li, H., Li, M., and Wang, F., Mechanisms of epithelial-mesenchymal transition in proliferative vitreoretinopathy, Discov. Med., 2015, vol. 20, pp. 207–217.

    PubMed  Google Scholar 

  237. Yao, Y. and Wang, C.H., Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine, NP J. Regen. Med., 2020, vol. 5, p. 14.

    Article  Google Scholar 

  238. Yasumuro, H., Sakurai, K., Toyama, F., et al., Implications of a multi-step trigger of retinal regeneration in the adult newt, Biomedicines, 2017, vol. 5, no. 2, p. 25.

    Article  PubMed Central  CAS  Google Scholar 

  239. Yoshii, C., Ueda, Y., Okamoto, M., and Araki, M., Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina, Dev. Biol., 2007, vol. 303, no. 1, pp. 45–50.

    Article  CAS  PubMed  Google Scholar 

  240. Yoshikawa, T., Mizuno, A., Yasumuro, H., et al., MEK-ERK and heparin-susceptible signaling pathways are involved in cell-cycle entry of the wound edge retinal pigment epithelium cells in the adult newt, Pigment Cell Melanoma Res., 2012, vol. 25, pp. 66–82.

    Article  CAS  PubMed  Google Scholar 

  241. Zhang, W. and Liu, H.T., MAPK signal pathways in the regulation of cell proliferation in mammalian cells, Cell Res., 2002, vol. 12, pp. 9–18.

    Article  CAS  PubMed  Google Scholar 

  242. Zhou, M., Geathers, J.S., Grillo, S.L., et al., Role of epithelial-mesenchymal transition in retinal pigment epithelium dysfunction, Front. Cell Dev. Biol., 2020, vol. 8, p. 501.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Zou, H., Shan, C., Ma, L., et al., Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy, Peer J., 2020, vol. 8. e10136.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the Core Centrum of Koltsov Institute of Developmental Biology, Russian Academy Sciences.

Funding

The work was performed within the framework of the State Assignment of Koltzov Institute of Developmental Biology of Russian Academy of Sciences, no. 0088-2021-0017.

Author information

Authors and Affiliations

Authors

Contributions

The authors made an equal contribution to this study and to the preparation of the article.

Corresponding authors

Correspondence to E. N. Grigoryan or Yu. V. Markitantova.

Ethics declarations

The authors declare that they have no conflict of interests.

All applicable international, national, and/or institutional guidelines for the use of animals in experiments and for the animal care conditions have been met.

Additional information

Dedicated to the memory of our teachers, O.G. Stroeva and V.I. Mitashov

Translated by A. Ermakov

Abbreviations: RPE—retinal pigment epithelium; NR—neural retina; TF—transcription factor; EMT—epithelial-mesenchymal transition; EM– epiretinal membrane; PVR—proliferative vitreoretinopathy; ECM—extracellular matrix; PCR—polymerase chain reaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoryan, E.N., Markitantova, Y.V. Molecular Strategies for Transdifferentiation of Retinal Pigment Epithelial Cells in Amphibians and Mammals In Vivo. Russ J Dev Biol 52, 220–243 (2021). https://doi.org/10.1134/S1062360421040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360421040032

Keywords:

Navigation