Skip to main content
Log in

Regeneration in Annelids: Cell Sources, Tissue Remodeling, and Differential Gene Expression

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Recent studies have shown that, despite stereotypical cleavage, annelids show the ability for embryonic regulation, including the formation of germline cells. However, the widest variety of regulative processes is presented in the postlarval development of annelids. The ability to regenerate, which is probably an ancestral feature, manifests itself variously among these animals. Some species are unable to regenerate lost segments. However, most species replace lost posterior body parts, many are able to reestablish missing head segments and structures, and some develop the entire body de novo even on the basis of one or two segments. Most of the regenerated structures are formed due to a set of undifferentiated cells arising from the division of dedifferentiated and/or stem cells. Moreover, the regeneration process often involves remodeling of survived body fragments and may thus be associated not only with local changes but also require a response at the level of the whole organism. In this review, we summarize many recent studies on the molecular and cellular mechanisms of regeneration in annelids. Special attention is paid to the regeneration of the digestive and nervous systems and integuments as well as to the involvement of stem and undifferentiated cells in the development of blastema and in replacing the lost gonads. Accumulation and analysis of recent findings about the diversity of cellular sources and mechanisms of annelid regeneration may shed light on the most evolutionarily conserved programs for maintaining regeneration ability and processes leading to the loss (limitation) of one of the ancestral features of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bely, A.E., Early events in annelid regeneration: a cellular perspective, Integr. Comp. Biol., 2014, vol. 54, no. 4, pp. 688–699.

    Article  PubMed  Google Scholar 

  2. Bely, A.E. and Sikes, J.M., Latent regeneration abilities persist following recent evolutionary loss in asexual annelids, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 1464–1469.

    Article  CAS  PubMed  Google Scholar 

  3. Bely, A.E. and Wray, G.A., Evolution of regeneration and fission in annelids: insights from engrailed- and orthodenticle-class gene expression, Development, 2001, vol. 128, no. 14, pp. 2781–2791.

    CAS  PubMed  Google Scholar 

  4. Berrill, N.J., Regeneraton and budding in worms, Biol. Rev., 1952, vol. 27, no. 4, pp. 401–438.

    Article  Google Scholar 

  5. Berrill, N.J., Induced segmental reorganization in sabellid worms, J. Embryol. Exp. Morphol., 1978, vol. 47, pp. 85–96.

    CAS  PubMed  Google Scholar 

  6. Bhambri, A., Dhaunta, N., Patel, S.S., Hardikar, M., et al., Large scale changes in the transcriptome of Eisenia fetida during regeneration, PLoS One, 2018, vol. 13, no. 9. e0204234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bilello, A.A. and Potswald, H.E., A cytological and quantitative study of neoblasts in the naid Ophidonais serpentina (Oligochaeta), Wilhelm Roux. Arch. Entwickl. Mech. Org., 1974, vol. 174, no. 3, pp. 234–249.

    Article  PubMed  Google Scholar 

  8. Boilly, B., Boilly-marer, Y., and Bely, A.E., Regulation of dorso-ventral polarity by the nerve cord during annelid regeneration: a review of experimental evidence, Regeneration, 2017, vol. 4, no. 2, pp. 54–68.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cornec, J.-P., Cresp, J., Delye, P., Hoarau, F., and Reynaud, G., Tissue responses and organogenesis during regeneration in the oligochete Limnodrilus hoffmeisteri (Clap.), Can. J. Zool., 1987, vol. 65, no. 2, pp. 403–414.

    Article  Google Scholar 

  10. Dannenberg, L.C. and Seaver, E.C., Regeneration of the germline in the annelid Capitella teleta,Dev. Biol., 2018, vol. 435, pp. 26–40.

    Article  CAS  Google Scholar 

  11. Dill, K.K. and Seaver, E.C., Vasa and nanos are coexpressed in somatic and germ line tissue from early embryonic cleavage stages through adulthood in the polychaete Capitella sp. I, Dev. Genes Evol., 2008, vol. 218, no. 9, pp. 453–463.

    Article  PubMed  Google Scholar 

  12. Dupin, F., Coulon, J., Parco, Y., Le Fontes, M., and Thouveny, Y., Formation of the extracellular matrix during the epimorphic anterior regeneration of Owenia fusiformis: autoradiographical and in situ hybridization studies, Int. J. Dev. Biol., 1991, vol. 35, no. 2, pp. 109–119.

    CAS  PubMed  Google Scholar 

  13. Evolutionary Developmental Biology of Invertebrates, vol. 2: Lophotrochozoa (Spiralia), Wanninger, A., Ed., Vienna: Springer Vienna, 2015.

    Google Scholar 

  14. Fontés, M., Coulon, J., Delgrossi, M.H., and Thouveny, Y., Muscle dedifferentiation and contractile protein synthesis during post-traumatic regeneration by Owenia fusiformis (polychaeta annelid), Cell Differ., 1983, vol. 13, no. 4, pp. 267–282.

    Article  PubMed  Google Scholar 

  15. Gazave, E., Behague, J., Laplane, L., Guillou, A., Preau, L., Demilly, A., Balavoine, G., and Vervoort, M., Posterior elongation in the annelid platynereis dumerilii involves stem cells molecularly related to primordial germ cells, Dev. Biol., 2013, vol. 382, pp. 246–267.

    Article  CAS  PubMed  Google Scholar 

  16. Giani, V.C., Yamaguchi, E., Boyle, M.J., and Seaver, E.C., Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta,EvoDevo, 2011, vol. 2, no. 10, pp. 1–18.

    Article  Google Scholar 

  17. Hill, S.D., Origin of the regeneration blastema in polychaete annelids, Integr. Comp. Biol., 1970, vol. 10, no. 2, pp. 101–112.

    CAS  Google Scholar 

  18. de Jong, D.M. and Seaver, E.C., A stable thoracic Hox code and epimorphosis characterize posterior regeneration in Capitella teleta,PLoS One, 2016, vol. 11, no. 2. e0149724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. de Jong, D.M. and Seaver, E.C., Investigation into the cellular origins of posterior regeneration in the annelid Capitella teleta,Regeneration, 2018, vol. 5, no. 1, pp. 61–77.

    Article  CAS  PubMed  Google Scholar 

  20. Juliano, C.E., Swartz, S.Z., and Wessel, G.M., A conserved germline multipotency program, Development, 2010, vol. 137, no. 24, pp. 4113–4126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kharin, A.V., Zagainova, I.V., and Kostyuchenko, R.P., Formation of the paratomic fission zone in freshwater oligochaetes, Russ. J. Dev. Biol., 2006, vol. 37, no. 6, pp. 354–365.

    Article  Google Scholar 

  22. Korotkova, G.P., Regeneratsiya zhivotnykh (Regeneration of Animals), St. Petersburg: S.-Peterb. Univ., 1997.

  23. Kostyuchenko, R.P. and Dondua, A.K., Development of the prototroch in embryogenesis of Nereis virens (Polychaeta), Russ. J. Dev. Biol., 2006, vol. 37, no. 2, pp. 69–76.

    Article  Google Scholar 

  24. Kostyuchenko, R.P. and Dondua, A.K., Peculiarities of isolated blastomere development of the polychaete Alitta virens,Russ. J. Dev. Biol., 2017, vol. 48, no. 3, pp. 236–240.

    Article  Google Scholar 

  25. Kostyuchenko, R.P. and Kozin, V.V., Morphallaxis versus epimorphosis? Cellular and molecular aspects of regeneration and asexual reproduction in annelids, Biol. Bull. (Moscow), 2020, vol. 47, no. 3, pp. 237–246.

  26. Kostyuchenko, R.P., Kozin, V.V., and Kupryashova, E.E., Regeneration and asexual reproduction in annelids: cells, genes, and evolution, Biol. Bull. (Moscow), 2016, vol. 43, no. 3, pp. 185–194.

    Article  Google Scholar 

  27. Kostyuchenko, R.P., Kozin, V.V., Filippova, N.A., and Sorokina, E.V., FoxA expression pattern in two polychaete species, Alitta virens and Platynereis dumerilii: examination of the conserved key regulator of the gut development from cleavage through larval life, post-larval growth and regeneration, Dev. Dyn., 2019, vol. 248, no. 8, pp. 728–743.

    Article  CAS  PubMed  Google Scholar 

  28. Kozin, V.V., Babakhanova, R.A., and Kostyuchenko, R.P., Functional role for MAP kinase signaling in cell lineage and dorsoventral axis specification in the basal gastropod Testudinalia testudinalis (Patellogastropoda, Mollusca), Russ. J. Dev. Biol., 2013, vol. 44, no. 1, pp. 35–47.

    Article  CAS  Google Scholar 

  29. Kozin, V.V. and Kostyuchenko, R.P., Vasa, PL10, and Piwi gene expression during caudal regeneration of the polychaete annelid Alitta virens,Dev. Genes Evol., 2015, vol. 225, no. 3, pp. 129–138.

    Article  CAS  PubMed  Google Scholar 

  30. Kozin, V.V., Filimonova, D.A., Kupriashova, E.E., and Kostyuchenko, R.P., Mesoderm patterning and morphogenesis in the polychaete Alitta virens (Spiralia, Annelida): Expression of mesodermal markers Twist, Mox, Evx and functional role for MAP kinase signaling, Mech. Dev., 2016, vol. 140, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  31. Kozin, V.V., Filippova, N.A., and Kostyuchenko, R.P., Regeneration of the nervous and muscular system after caudal amputation in the polychaete Alitta virens (Annelida: Nereididae), Russ. J. Dev. Biol., 2017, vol. 48, no. 3, pp. 198–210.

    Article  Google Scholar 

  32. Kulakova, M., Bakalenko, N., Novikova, E., Cook, C.E., Eliseeva, E., Steinmetz, P.R.H., Kostyuchenko, R.P., Dondua, A., Arendt, D., Akam, M., and Andreeva, T., Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa), Dev. Genes Evol., 2007, vol. 217, no. 1, pp. 39–54.

    Article  CAS  PubMed  Google Scholar 

  33. Lanza, A.R. and Seaver, E.C., An organizing role for the TGF-β signaling pathway in axes formation of the annelid Capitella teleta,Dev. Biol., 2018, vol. 435, pp. 26–40.

    Article  CAS  PubMed  Google Scholar 

  34. Müller, M.C.M., Nerve development, growth and differentiation during regeneration in Enchytraeus fragmentosus and Stylaria lacustris (Oligochaeta), Dev. Growth Differ., 2004, vol. 46, no. 5, pp. 471–478.

    Article  PubMed  Google Scholar 

  35. Myohara, M., What role do annelid neoblasts play? A comparison of the regeneration patterns in a neoblast-bearing and a neoblast-lacking enchytraeid oligochaete, PLoS One, 2012, vol. 7, no. 5. e37319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Myohara, M., Yoshida-noro, C., and Kobari, F., Fragmenting oligochaete Enchytraeus japonensis: a new material for regeneration study, Dev. Growth Differ., 1999, vol. 41, no. 5, pp. 549–555.

    Article  CAS  PubMed  Google Scholar 

  37. Myohara, M., Niva, C.C., and Lee, J.M., Molecular approach to annelid regeneration: cdna subtraction cloning reveals various novel genes that are upregulated during the large-scale regeneration of the oligochaete, Enchytraeus japonensis,Dev. Dyn., 2006, vol. 235, pp. 2051–2070.

    Article  CAS  PubMed  Google Scholar 

  38. Nakamoto, A., Nagy, L.M., and Shimizu, T., Secondary embryonic axis formation by transplantation of d quadrant micromeres in an oligochaete annelid, Development, 2010, vol. 138, pp. 283–290.

    Article  CAS  PubMed  Google Scholar 

  39. Newmark, P.A. and Alvarado, A.S., Regeneration in Planaria, eLS, 2001, pp. 1–7.

  40. Novikova, E.L., Bakalenko, N.I., Nesterenko, A.Y., and Kulakova, M.A., Expression of Hox genes during regeneration of nereid polychaete Alitta (Nereis) virens (Annelida, Lophotrochozoa), EvoDevo, 2013, vol. 4, no. 14.

  41. Novikova, Yu.P., Poplinskaya, V.A., and Grigoryan, E.N., Organotypic culturing as a way to study recovery opportunities of the eye retina in vertebrates and humans, Russ. J. Dev. Biol., 2020, vol. 51, no. 1, pp. 31–44.

    Article  Google Scholar 

  42. Okada, Y.K., Regeneration and fragmentation in the syllidian polychaetes, W. Roux’ Archiv f.Entwicklungsmechanik, 1929, vol. 115, no. 3, pp. 542–600.

    Article  Google Scholar 

  43. Oyama, A. and Shimizu, T., Transient occurrence of vasa-expressing cells in nongenital segments during embryonic development in the oligochaete annelid Tubifex tubifex,Dev. Genes Evol., 2007, vol. 217, no. 10, pp. 675–690.

    Article  CAS  PubMed  Google Scholar 

  44. Oyama, A., Yoshida, H., and Shimizu, T., Embryonic expression of p68, a DEAD-box RNA helicase, in the oligochaete annelid Tubifex tubifex,Gene Expr. Patterns, 2008, vol. 8, no. 6, pp. 464–470.

    Article  CAS  PubMed  Google Scholar 

  45. Özpolat, B.D. and Bely, A.E., Gonad establishment during asexual reproduction in the annelid Pristina leidyi,Dev. Biol., 2015, vol. 405, no. 1, pp. 123–136.

    Article  PubMed  CAS  Google Scholar 

  46. Paulus, T. and Müller, M.C.M., Cell proliferation dynamics and morphological differentiation during regeneration in Dorvillea bermudensis (Polychaeta, Dorvilleidae), J. Morphol., 2006, vol. 267, no. 4, pp. 393–403.

    Article  PubMed  Google Scholar 

  47. Pfeifer, K., Dorresteijn, A.W.C., and Frobius, A.C., Activation of Hox genes during caudal regeneration of the polychaete annelid Platynereis dumerilii,Dev. Genes Evol., 2012, vol. 222, no. 3, pp. 165–179.

    Article  CAS  PubMed  Google Scholar 

  48. Planques, A., Malem, J., Parapar, J., Vervoort, M., and Gazave, E., Morphological, cellular and molecular characterization of posterior regeneration in the marine annelid Platynereis dumerilii,Dev. Biol., 2019, vol. 445, no. 2, pp. 189–210.

    Article  CAS  PubMed  Google Scholar 

  49. Randolph, H., The regeneration of the tail in Lumbriculus,J. Morphol., 1892, vol. 7, no. 3, pp. 317–344.

    Article  Google Scholar 

  50. Ribeiro, R.P., Ponz-Segrelles, G., Bleidorn, C., and Aguado, M.T., Comparative transcriptomics in Syllidae (Annelida) indicates that posterior regeneration and regular growth are comparable, while anterior regeneration is a distinct process, BMC Genomics, 2019, vol. 20, no. 1, pp. 1–13.

    Article  Google Scholar 

  51. de Rosa, R., Prud’homme, B., and Balavoine, G., Caudal and even-skipped in the annelid Platynereis dumerilii and the ancestry of posterior growth, Evol. Dev., 2005, vol. 7, no. 6, pp. 574–587.

    Article  PubMed  Google Scholar 

  52. Stocum, D.L., Regenerative Biology and Medicine, 2nd ed., Amsterdam: Elsevier Science Publ. Co. Inc., 2012.

    Google Scholar 

  53. Sugio, M., Takeuchi, K., Kutsuna, J., Tadokoro, R., Takahashi, Y., Yoshida-noro, C., and Tochinai, S., Exploration of embryonic origins of germline stem cells and neoblasts in Enchytraeus japonensis (Oligochaeta, Annelida), Gene Expr. Patterns, 2008, vol. 8, no. 4, pp. 227–236.

    Article  CAS  PubMed  Google Scholar 

  54. Sugio, M., Yoshida-noro, C., Ozawa, K., and Tochinai, S., Stem cells in asexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelid): proliferation and migration of neoblasts, Dev. Growth Differ., 2012, vol. 54, no. 4, pp. 439–450.

    Article  PubMed  Google Scholar 

  55. Tadokoro, R., Sugio, M., Kutsuna, J., and Tochinai, S., Early segregation of germ and somatic lineages during gonadal regeneration in the annelid Enchytraeus japonensis,Curr. Biol., 2006, vol. 16, no. 10, pp. 1012–1017.

    Article  CAS  PubMed  Google Scholar 

  56. Takeo, M., Yoshida-noro, C., and Tochinai, S., Morphallactic regeneration as revealed by region-specific gene expression in the digestive tract of Enchytraeus japonensis (Oligochaeta, Annelida), Dev. Dyn., 2008, vol. 237, no. 5, pp. 1284–1294.

    Article  CAS  PubMed  Google Scholar 

  57. Takeo, M., Yoshida-noro, C., and Tochinai, S., Functional analysis of grimp, a novel gene required for mesodermal cell proliferation at an initial stage of regeneration in Enchytraeus japonensis (Enchytraeidae, Oligochaete), Int. J. Dev. Biol., 2010, vol. 160, pp. 151–160.

    Article  CAS  Google Scholar 

  58. Thouveny, Y., Regeneration through phylogenesis, Cell. Mol. Basis Regen., 1998, pp. 9–44.

    Google Scholar 

  59. Turner, C.D., The effects of X-rays on posterior regeneration in lumbriculus inconstans, J. Exp. Zool., 1934, vol. 68, no. 1, pp. 95–119.

    Article  Google Scholar 

  60. Tweeten, K.A. and Anderson, A., Analysis of cell proliferation and migration during regeneration in Lumbriculus variegatus (Clitellata: Lumbriculidae), Bios, 2008, vol. 79, no. 4, pp. 183–190.

    Article  Google Scholar 

  61. Tweeten, K.A. and Reiner, A., Characterization of serine proteases of Lumbriculus variegatus and their role in regeneration, Invertebr. Biol., 2012, vol. 131, no. 4, pp. 322–332.

    Article  Google Scholar 

  62. Yoshida-noro, C. and Tochinai, S., Stem cell system in asexual and sexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelida), Dev. Growth Differ., 2010, vol. 52, no. 1, pp. 43–55.

    Article  CAS  PubMed  Google Scholar 

  63. Yoshida-noro, C., Myohara, M., Kobari, F., and Tochinai, S., Nervous system dynamics during fragmentation and regeneration in Enchytraeus japonensis (Oligochaeta, Annelida), Dev. Genes Evol., 2000, vol. 210, no. 6, pp. 311–319.

    Article  CAS  PubMed  Google Scholar 

  64. Zattara, E.E. and Bely, A.E., Evolution of a novel developmental trajectory: fission is distinct from regeneration in the annelid Pristina leidyi,Evol. Dev., 2011, vol. 13, no. 1, pp. 80–95.

    Article  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project nos. 19-04-01111-a and 18-34-00962-mol-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Kostyuchenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikanorova, D.D., Kupriashova, E.E. & Kostyuchenko, R.P. Regeneration in Annelids: Cell Sources, Tissue Remodeling, and Differential Gene Expression. Russ J Dev Biol 51, 148–161 (2020). https://doi.org/10.1134/S1062360420030042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360420030042

Keywords:

Navigation