Skip to main content
Log in

Thymus development in early ontogeny: A comparative aspect

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

This review is dedicated to comparative analysis of the early stages of thymus ontogeny in fish, amphibians, and mammals. Morphological and molecular-genetic aspects of the formation of thymic stroma, colonization of this organ with T-cell progenitors, and interaction of different cell populations in the course of organogenesis are considered. Particular attention is given to the hematopoietic role of the thymus during embryogenesis and new data on the origin of T-cell progenitors. The hypothesis about the possible presence in the organ of a self-sustaining population of stem cells, formed regardless of fetal hematopoiesis areas, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolfsson, J., Måsson, R., Buza-Vidas, N., et al., Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment, Cell, 2005, vol. 121, no. 2, pp. 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Albert, S., Wolf, P.L., Pryjma, I., et al., Variations in morphology of erythroblasts of normal mouse thymus, J. Reticuloend. Soc., 1965, vol. 2, no. 2, pp. 158–171.

    CAS  Google Scholar 

  • Albert, S., Wolf, P.L., Pryjma, I., et al., Erythhjropoiesis in the human thymus, Am. J. Clin. Pathol., 1966, vol. 45, no. 4, pp. 460–464.

    CAS  PubMed  Google Scholar 

  • Allman, D., Sambandam, A., Kim, S., et al., Thymopoiesis independent of common lymphoid progenitors, Nat. Immunol., 2003, vol. 4, no. 2, pp. 168–174.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, G., Moore, N.C., Owen, J.J., et al., Cellular interactions in thymocyte development, Ann. Rev. Immunol., 1996, vol. 14, no. 1, pp. 73–99.

    Article  CAS  Google Scholar 

  • Anderson, G. and Jenkinson, E.J., Lymphostromal interactions in thymic development and function, Nat. Rev. Immunol., 2001, vol. 1, no. 1, pp. 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, G., Jenkinson, E.J., and Rodewald, H.R., A roadmap for thymic epithelial cell development, Eur. J. Immunol., 2009, vol. 39, no. 7, pp. 1694–1699.

    Article  CAS  PubMed  Google Scholar 

  • Auerbach, R., Experimental analysis of the origin of cell types in the development of the mouse thymus, Dev. Biol., 1961, vol. 3, no. 3, pp. 336–354.

    Article  CAS  PubMed  Google Scholar 

  • Baik, S., Jenkinson, E.J., Lane, P.J., et al., Generation of both cortical and Aire+ medullary thymic epithelial compartments from CD205+ progenitors, Eur. J. Immunol., 2013, vol. 43, no. 3, pp. 589–594.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bajoghli, B., Aghaallaei, N., Hess, I., et al., Evolution of genetic networks underlying the emergence of thymopoiesis in vertebrates, Cell, 2009, vol. 138, no. 1, pp. 186–197.

    Article  CAS  PubMed  Google Scholar 

  • Balciunaite, G., Keller, M.P., Balciunaite, E., et al., Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice, Nat. Immunol., 2002, vol. 3, no. 11, pp. 1102–1108.

    Article  CAS  PubMed  Google Scholar 

  • Beard, J., The origin and histogenesis of the thymus in Raja batis, Zool. Jahrb., Abt. Anat. Ontog. Tiere, 1902, vol. 26, pp. 403–480.

    Google Scholar 

  • Bechtold, T.E., Smith, P.B., and Turpen, J.B., Differential stem cell contributions to thymocyte succession during development of Xenopus laevis, J. Immunol., 1992, vol. 148, no. 10, pp. 2975–2982.

    CAS  PubMed  Google Scholar 

  • Blackburn, C.C. and Manley, N.R., Developing a new paradigm for thymus organogenesis, Nat. Rev. Immunol., 2004, vol. 4, no. 4, pp. 278–289.

    Article  CAS  PubMed  Google Scholar 

  • Boehm, T., Bleul, C.C., and Schorpp, M., Genetic dissection of thymus development in mouse and zebrafish, Immunol. Rev., 2003, vol. 195, no. 1, pp. 15–27.

    Article  CAS  PubMed  Google Scholar 

  • Boehm, T., Self-renewal of thymocytes in the absence of competitive precursor replenishment, J. Exp. Med., 2012, vol. 209, pp. 1397–1400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Botham, J.W. and Manning, M.J., The histogenesis of the lymphoid organs in the carp Cyprinus carpio L. and the ontogenetic development of allograft reactivity, J. Fish. Biol., 1981, vol. 19, no. 4, pp. 403–414.

    Article  Google Scholar 

  • Bowden, T.J., Cook, P., and Rombout, J., Development and function of the thymus in teleosts, Fish Shellfish Immunol., 2005, vol. 19, no. 5, pp. 413–427.

    Article  CAS  PubMed  Google Scholar 

  • Buse, E., Habermann, G., and Vogel, F., Thymus development in Macaca fascicularis (Cynomolgus monkey): an approach for toxicology and embryology, J. Mol. Histol., 2006, vol. 37, nos. 3–4, pp. 161–170.

    Article  PubMed  Google Scholar 

  • Chantanachookhin, C., Seikai, T., and Tanaka, M., Comparative study of the ontogeny of the lymphoid organs in three species of marine fish, Aquaculture, 1991, vol. 99, no. 1, pp. 143–155.

    Article  Google Scholar 

  • Charlemagne, J., Thymus development in amphibians: colonization by thymic endodermal rudiments by lymphoid stem-cells of mesenchymal origin in the urodele Pleurodeles waltlii Michah, Annales d’Immunologie, 1976, vol. 128, nos. 4–5, pp. 897–904.

    Google Scholar 

  • Chen, A.T. and Zon, L.I., Zebrafish blood stem cells, J. Cell. Biochem., 2009, vol. 108, no. 1, pp. 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Ciau-Uitz, A., Walmsley, M., and Patient, R., Distinct origins of adult and embryonic blood in Xenopus, Cell, 2000, vol. 102, no. 6, pp. 787–796.

    Article  CAS  PubMed  Google Scholar 

  • Ciau-Uitz, A., Liu, F., and Patient, R., Genetic control of hematopoietic development in Xenopus and zebrafish, Int. J. Dev. Biol., 2010, vol. 54, no. 6, p. 1139.

    Article  PubMed  Google Scholar 

  • Cordier, A.C. and Haumont, S.M., Development of thymus, parathyroids, and ultimo-branchial bodies in NMRI and nude mice, Am. J. Anat., 1980, vol. 157, no. 3, pp. 227–263.

    Article  CAS  PubMed  Google Scholar 

  • Deanesly, R., The structure and development of the thymus in fish, with special reference to Salmo fario, Quart. J. Micro. Sci., 1927, vol. 71, pp. 113–145.

    Google Scholar 

  • Le Douarin, N., Thymus ontogeny studied in interspecific chimeras, in Development of Host Defenses, Cooper, M. and Dayton, D., Eds., New York: Raven Press, 1977.

    Google Scholar 

  • Ellis, A.E., Ontogeny of the immune response in Salmo salar. Histogenesis of the lymphoid organs and appearance of membrane immunoglobin and mixed leucocyte reactivity, in Developmental Immunobiology, Solomon, J.B. and Horton, J.D., Eds., Elsevier, 1977, pp. 225–331.

    Google Scholar 

  • Van Ewijk, W., Wang, B., Hollander, G., et al., Thymic microenvironments, 3-D versus 2-D?, Sem. Immunol., 1999, vol. 11, no. 1, pp. 57–64.

    Article  Google Scholar 

  • Van Ewijk, W., Hollander, G., Terhorst, C., et al., Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets, Development, 2000, vol. 127, no. 8, pp. 1583–1591.

    PubMed  Google Scholar 

  • Good, R.A., Dalmasso, A.P., Martinez, C., et al., The role of the thymus in development of immunologic capacity in rabbits and mice, J. Exp. Med., 1962, vol. 116, no. 5, pp. 773–796.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon, J., Patel, S.R., Mishina, Y., et al., Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis, Dev. Biol., 2010, vol. 339, no. 1, pp. 141–154.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon, J. and Manley, N.R., Mechanisms of thymus organogenesis and morphogenesis, Development, 2011, vol. 138, no. 18, pp. 3865–3878.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grace, M.F. and Manning, M.J., Histogenesis of the lymphoid organs in rainbow trout, Salmo gairdneri Rich. 1836, Dev. Comp. Immunol., 1980, vol. 4, pp. 255–264.

    Article  CAS  PubMed  Google Scholar 

  • Gusel’nikova, V.V., Sinitsina, V.F., Korol’kova, E.D., et al., Localization of mast cells in mouse thymus at different stages of ontogeny, Morfologiya, 2012, vol. 141, no. 2, pp. 40–45.

    Google Scholar 

  • Gusel’nikova, V.V. and Polevshchikov, A.V., Changes in the population of thymus mast cells after accidental transformation, Tsitokiny Vosp., 2013, vol. 12, nos. 1–2, pp. 125–131.

    Google Scholar 

  • Von Hagen, F., Die wichtigsten Endokrinen organem des Flussaals, Zool. Jahrb., 1936, vol. 61, pp. 467–538.

    Google Scholar 

  • Hansen, J.D. and Zapata, A.G., Lymphocyte development in fish and amphibians, Immunol. Rev., 1998, vol. 166, no. 1, pp. 199–220.

    Article  CAS  PubMed  Google Scholar 

  • Hauri-Hohl, M.M., Zuklys, S., Keller, M.P., et al., TGF-β signaling in thymic epithelial cells regulates thymic involution and postirradiation reconstitution, Blood, 2008, vol. 112, no. 3, pp. 626–634.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holländer, G., et al., Cellular and molecular events during early thymus development, Immunol. Rev., 2006, vol. 209, no. 1, pp. 28–46.

    Article  PubMed  Google Scholar 

  • Igarashi, H., Gregory, S.C., Yokota, T., et al., Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow, Immunity, 2002, vol. 17, no. 2, pp. 117–130.

    Article  CAS  PubMed  Google Scholar 

  • Jeker, L.T., Barthlott, T., Keller, M.P., et al., Maintenance of a normal thymic microenvironment and T-cell homeostasis require Smad4-mediated signaling in thymic epithelial cells, Blood, 2008, vol. 112, no. 9, pp. 3688–3695.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jósefsson, S. and Tatner, M.F., Histogenesis of the lymphoid organs in sea bream Sparus aurata L., Fish Shellfish Immunol., 1993, vol. 3, no. 1, pp. 35–49.

    Article  Google Scholar 

  • Kau, C.L. and Turpen, J.B., Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis, J. Immunol., 1983, vol. 131, no. 5, pp. 2262–2266.

    CAS  PubMed  Google Scholar 

  • O’Keeffe, M., Hochrein, H., and Vremec, D., Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus, J. Exp. Med., 2002, vol. 196, pp. 1307–1319.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kendall, M.D., Hemopoiesis in the thymus, J. Immunol. Res., 1995, vol. 4, no. 3, pp. 157–168.

    CAS  Google Scholar 

  • Kissa, K., Murayama, E., Zapata, A., et al., Live imaging of emerging hematopoietic stem cells and early thymus colonization, Blood, 2008, vol. 111, no. 3, pp. 1147–1156.

    Article  CAS  PubMed  Google Scholar 

  • Klug, D.B., Carter, C., Gimenez-Conti, I.B., et al., Cutting edge: thymocyte-independent and thymocyte-dependent phases of epithelial patterning in the fetal thymus, J. Immunol., 2002, vol. 169, pp. 2842–2845.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.H., Williams, A., Hong, C.S., et al., Early development of the thymus in Xenopus laevis, Dev. Dyn., 2013, vol. 242, no. 2, pp. 164–178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu, C., Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization, Blood, 2006, vol. 108, pp. 2531–2539.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Yu, S., and Manley, N.R., Gcm2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/thymus primordia, Dev. Biol., 2007, vol. 305, no. 1, pp. 333–346.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu, Y., Zhang, S., Jiang, G., et al., The development of the lymphoid organs of flounder, Paralichthys olivaceus, from hatching to 13 months, Fish Shellfish Immunol., 2004, vol. 16, no. 5, pp. 621–632.

    Article  PubMed  Google Scholar 

  • Liu, C., Ueno, T., Kuse, S., et al., The role of CCL21 in recruitment of T-precursor cells to fetal thymi, Blood, 2005, vol. 105, no. 1, pp. 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Ma, D., Wei, Y., and Liu, F., Regulatory mechanisms of thymus and T cell development, Dev. Comp. Immunol., 2013, vol. 39, no. 1, pp. 91–102.

    Article  CAS  PubMed  Google Scholar 

  • Maéno, M., Todate, A., and Katagiri, C., The localization of precursor cells for larval and adult hemopoietic cells of Xenopus laevis in two regions of embryos, Dev. Gr. Diff., 1985, vol. 27, no. 2, pp. 137–148.

    Article  Google Scholar 

  • Manley, N.R. and Capecchi, M.R., The role of Hoxa-3 in mouse thymus and thyroid development, Development, 1995, vol. 121, no. 7, pp. 1989–2003.

    CAS  PubMed  Google Scholar 

  • Manley, N.R., Thymus organogenesis and molecular mechanisms of thymic epithelial cell differentiation, Sem. Immunol., 2000, vol. 12, no. 5, pp. 421–428.

    Article  CAS  Google Scholar 

  • Manley, N.R. and Blackburn, C.C., A developmental look at thymus organogenesis: where do the non-hematopoietic cells in the thymus come from? Curr. Op. Immunol., 2003, vol. 15, no. 2, pp. 225–232.

    Article  CAS  Google Scholar 

  • Marr, S., Morales, H., Bottaro, A., et al., Localization and differential expression of activation-induced cytidine deaminase in the amphibian Xenopus upon antigen stimulation and during early development, J. Immunol., 2007, vol. 179, no. 10, pp. 6783–6789.

    Article  CAS  PubMed  Google Scholar 

  • Martin, C.H., Aifantis, I., Scimone, M.L., et al., Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential, Nat. Immunol., 2003, vol. 4, no. 9, pp. 866–873.

    Article  CAS  PubMed  Google Scholar 

  • Maurer, F., Schilddruse und thymus der teleostier, Morph. Jahrb., 1886, vol. 11, pp. 129–175.

    Google Scholar 

  • Nagata, S., Electron microscopic study on the early histogenesis of thymus in the toad, Xenopus laevis, Cell. Tiss. Res., 1977, vol. 179, no. 1, pp. 87–96.

    CAS  Google Scholar 

  • Nakamura, H. and Ayer, L.L., Neural crest and thymic myoid cells, Curr. Top. Dev. Biol., 1986, vol. 20, pp. 111–115.

    CAS  PubMed  Google Scholar 

  • Nitta, T., Ohigashi, I., Nakagawa, Y., et al., Cytokine crosstalk for thymic medulla formation, Curr. Op. Immunol., 2011, vol. 23, no. 2, pp. 190–197.

    Article  CAS  Google Scholar 

  • Nusbaum, J. and Prymak, T., Zur entwicklungsgeschichte der lymphoiden elemente der thymus bei dem knochenfischen, Anat. Anz., 1901, vol. 19, pp. 6–19.

    Google Scholar 

  • Orkin, S.H. and Zon, L.I., Hematopoiesis: an evolving paradigm for stem cell biology, Cell, 2008, vol. 132, no. 4, pp. 631–644.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Owen, J.J.T. and Ritter, M.A., Tissue interaction in the development of thymus lymphocytes, J. Exp. Med., 1969, vol. 129, no. 2, pp. 431–442.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pasquier, L.D., Schwager, J., and Flajnik, M.F., The immune system of Xenopus, Ann. Rev. Immunol., 1989, vol. 7, no. 1, pp. 251–275.

    Article  Google Scholar 

  • Du Pasquier, L. and Flajnik, M.F., Expression of MHC class II antigens during Xenopus development, J. Immunol. Res., 1990, vol. 1, no. 2, pp. 85–95.

    Google Scholar 

  • Peaudecerf, L., Lemos, S., and Galgano, A., Thymocytes may persist and differentiate without any input from bone marrow progenitors, J. Exp. Med., 2012, vol. 209, pp. 1401–1408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ritter, M.A., Embryonic mouse thymus development: stem cell entry and differentiation, Immunol., 1978, vol. 34, no. 1, p. 69.

    CAS  Google Scholar 

  • Robert, J. and Cohen, N., Ontogeny of ctx expression in Xenopus, Dev. Comp. Immunol., 1998, vol. 22, no. 5, pp. 605–612.

    Article  CAS  PubMed  Google Scholar 

  • Robert, J. and Ohta, Y., Comparative and developmental study of the immune system in Xenopus, Dev. Dyn., 2009, vol. 238, no. 6, pp. 1249–1270.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romano, N. Fanelli, M., et al., Histological and cytological studies on the developing thymus of sharpsnout seabream, Diplodus puntazzo, J. Anat., 1999, vol. 194, no. 1, pp. 39–50.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanel, F.T., Ultrastructure of differentiating cells during thymus histogenesis, Zeitschrift Zellforsch. Mik. Anat., 1967, vol. 83, no. 1, pp. 8–29.

    Article  CAS  Google Scholar 

  • Schwarz, B.A. and Bhandoola, A., Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis, Immunol. Rev., 2006, vol. 209, no. 1, pp. 47–57.

    Article  PubMed  Google Scholar 

  • Shakib, S., Desanti, G.E., Jenkinson, W.E., et al., Checkpoints in the development of thymic cortical epithelial cells, J. Immunol., 2009, vol. 182, no. 1, pp. 130–137.

    Article  CAS  PubMed  Google Scholar 

  • Soza-Ried, C., Bleul, C.C., Schorpp, M., et al., Maintenance of thymic epithelial phenotype requires extrinsic signals in mouse and zebrafish, J. Immunol., 2008, vol. 181, no. 8, pp. 5272–5277.

    Article  CAS  PubMed  Google Scholar 

  • Taghon, T., Yui, M.A., and Rothenberg, E.V., Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3, Nat. Immunol., 2007, vol. 8, no. 8, pp. 845–855.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trede, N.S., Zapata, A., and Zon, L.I., Fishing for lymphoid genes, Trends Immunol., 2001, vol. 22, no. 6, pp. 302–307.

    Article  CAS  PubMed  Google Scholar 

  • Turpen, J.B. and Knudson, C.M., Ontogeny of hematopoietic cells in Rana pipiens: precursor cell migration during embryogenesis, Dev. Biol., 1982, vol. 89, no. 1, pp. 138–151.

    Article  CAS  PubMed  Google Scholar 

  • Turpen, J.B. and Smith, P.B., Precursor immigration and thymocyte succession during larval development and metamorphosis in Xenopus, J. Immunol., 1989, vol. 142, no. 1, pp. 41–47.

    CAS  PubMed  Google Scholar 

  • Wurbel, M.A., Malissen, B., and Campbell, J.J., Complex regulation of CCR9 at multiple discrete stages of T cell development, Eur. J. Immunol., 2006, vol. 36, no. 1, pp. 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Xie, H.X., Nie, P., Zhang, Y.A., et al., Histological and cytological studies on the developing thymus of mandarin fish Siniperca chuatsi (Perciformes: Teleostei), J. App. Icht., 2006, vol. 22, no. 2, pp. 125–131.

    Article  Google Scholar 

  • Yushkov, B.G., Chereshnev, V.A., Klimin, V.G., et al., Tuchnye kletki. Fiziologiya i patofiziologiya (Mast Cells: Physiology and Pathophysiology), Moscow: Meditsina, 2011.

    Google Scholar 

  • Zimin, Yu.I. and Khaitov, R.M., T-cell migration to the bone marrow in the initial period of stress response, Byull. Eksp. Biol. Med., 1975, no. 12, pp. 68–70.

    Google Scholar 

  • Zlotoff, D.A., Sambandam, A., Logan, T.D., et al., CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus, Blood, 2010, vol. 115, no. 10, pp. 1897–1905.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Polevshchikov.

Additional information

Original Russian Text © K.A. Vasil’ev, A.V. Polevshchikov, 2015, published in Ontogenez, 2015, Vol. 46, No. 3, pp. 143–154.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, K.A., Polevshchikov, A.V. Thymus development in early ontogeny: A comparative aspect. Russ J Dev Biol 46, 111–120 (2015). https://doi.org/10.1134/S106236041503008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106236041503008X

Keywords

Navigation