Skip to main content
Log in

Influence of Gamma Irradiated Steinernema carpocapsae on Some Physiological Aspects of Galleria mellonella Larvae

  • ZOOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The physiological changes in G. mellonella larvae treated with unirradiated and 2 Gy gamma irradiated S. carpocapsae had been investigated. The results indicated that S. carpocapsae exhibited a significant decrease in the total body concentrations of proteins, lipids, carbohydrates and urea of 5th larval of G. mellonella with increasing the infection incubation period. Moreover, the decrease in the concentration of these total body metabolic products was greatly remarkable in larvae infected with gamma irradiated S. carpocapsae. In contrast, the results revealed that S. carpocapsae caused a significant increase in the acid phospatase and chitinase activity of the total body of 5th larval instar of G. mellonella with increasing the treatment time. Which was greatly remarkable in larvae treated with gamma irradiated S. carpocapsae. Protein bands at different time intervals for all tested treatments revealed the absence of some bands, appearance of new bands and changes in the intensity of the bands. Therefore, it could be concluded that gamma irradiation of S. carpocapsae increased it’s efficacy and can be used in pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Akhrust, R.J. and Boemare, N.E., Biology and taxonomy of Xenorabdus, in Entomopathogenic Nematodes in Biological Control, Guglar, R. and Kaya, H.K., Eds., Boca Raton, Florida: CRC, 1990, pp. 75–90.

    Google Scholar 

  2. Andreadis, T.G. and Hall, D.W., Neoaplectana carpocapsae: encapsulation in Aedes aegypti and changes in host hemocytes and hemotymph proteins, Exp. Parasilol., 1976, vol. 39, pp. 252–261.

    Article  CAS  Google Scholar 

  3. Andreeva, G.N., Electrophoretic and immunochemical analysis of the protein components of the nematode Neoaplectana glaseri, in Helminths of Insects, Sonin, M.D., Ed., 1990, pp. 1–6.

    Google Scholar 

  4. Bowen, D.J., Rocheleau, T.A., Grutzmacher, C., Meslet, L., Valens, M., Marble, D., Dowling, A., Ffench-Constant, R.H., and Blight, M.A., Genetic and biochemical characterization of PrtA, an RTX-like metalloprotease from Photorhabdus, Microbiology, 2003, vol. 149, pp. 1581–1591.

    Article  CAS  Google Scholar 

  5. Bowen, D., Blackburn, M., Rocheleau, V., Grutzmacher, V., and French-Constant, R.H., Secreted proteases from Photorhabdus luminescens: separation of the extracellular proteases from the insecticidal Tc toxin complexes, Insect Biochem. Mol. Biol., 2000, vol. 30, pp. 69–74.

    Article  CAS  Google Scholar 

  6. Burnel, A.M. and Stock, S.P., Heterorhabditis stienernema and their bacterial symbionts—lethal pathogens of insects, Nematology, 20002, vol. 2, no. 1, pp. 31–42.

  7. Cabral, C.M., Cherqui, A., Pereira, A., and Simoes, N., Purification and characterization of two distinct metalloproteases sectreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29, Appl. Environ. Microbiol., 2004, vol. 70, pp. 3831–3838.

    Article  CAS  Google Scholar 

  8. Chen, G., Zhang,Y., Li, J., Dunphy, G.B., Punja, Z.K., and Webster, J.M., Chitinase activity of Xenorhabdus and Photorhabdus species, bacteria associates of entomopathogenic nematodes, J. Invertebr. Pathol., 1996, vol. 68, pp. 101–108.

    Article  CAS  Google Scholar 

  9. CoStat, CoStat, User’s Manual, CoHortSoftware, Minneapolis, MN, 1995.

  10. Crawford, J.M., Kontnik, R., and Clardy, J., Regulating alternative lifestyles in entomopathogenic bacteria, Curr. Biol., 2010, vol. 20, no. 1, pp. 13–18.

    Article  Google Scholar 

  11. Duncan, D.B., Multiple range and multiple F tests, Biometrics, 1955, vol. 11, pp. 1–42.

    Article  Google Scholar 

  12. El-Sadawy, H.A. and Abou El-Dobal, S.K.A., Changes in haemolymph proteins pattern of Hyalomma dromedarii ticks infected with entomopathogenic nematodes, Glob. Vet., 2009, vol. 3, no. 6, pp. 441–446.

    CAS  Google Scholar 

  13. El-Sadawy, H.A., Abou-Nour, A.A., Sobh, H.A., and Ghally, S.E., Biochemical changes in Parasarcophaga aegyptiaca and Argas persicus (persicargas) haemolymph infected with entomopathogenic nematode, Nat. Sci., 2009, vol. 7, no. 6, pp. 70–81.

    Google Scholar 

  14. Fawcett, J.K. and Soctt, J.E., A rapid and precise method for the determination of urea, J. Clin. Pathol., 1960, vol. 13, pp. 156–159.

    Article  CAS  Google Scholar 

  15. Forst, S., Dowds, B., Boemare, N., and Stackebrandt, E., Xenorhabdus and Photorhabdus spp.: bugs that kill bugs, Annu. Rev. Microbiol., 1997, vol. 51, pp. 47–72.

    Article  CAS  Google Scholar 

  16. Georgis, R., Koppenhö fer, A.M., Lacey, L.A., Be’lair, G., Duncan, L.W., Grewal, P.S., Samish, M., Tan, L., Torr, P., and Van Tol, R.W.H.M., Successes and failures in the use of parasitic nematodes for pest control, Biol. Control, 2006, vol. 38, pp. 103–123.

    Article  Google Scholar 

  17. Ghally, S.E., Kamel, E.G., and Nasr, N.M., Study on the influence of entomophilous nematodes on Spodoptera littoralis (Boisduval), J. Egy. Soc. Parasitol., 1988, vol. 18, no. 1, pp. 119–127.

    CAS  Google Scholar 

  18. Glazer, I. and Lewis, E.E., Bioassays for entomopathogenic nematodes, in Bioassays for Entomopathogenic Microbes and Nematodes, Navon, A. and Ascher, K.R.S., Eds., Wallingford, UK: CAB Int., 2000, pp. 229–247.

    Google Scholar 

  19. Gornal, A.C., Bardawill, C.J., and David, M.M., Determination of serum protein by means of biuret reaction, J. Biol. Chem., 1949, vol. 177, no. 2, pp. 751–756.

    Article  Google Scholar 

  20. Hussein, M.A., Utilization of entomopathogenic nematodes for the biological control of some lepidopterous pest Entomology (BioControl), Ph. D. Thesis, Fac. Sci., Ain Shams University, Egypt, 2004.

  21. Joyce, S.A., Watson, R.J., and Clarke, D.J., The regulation of pathogenicity and mutualism in Photorhabdus, Curr. Opin. Microbiol., 2006, vol. 9, pp. 1–6.

    Article  Google Scholar 

  22. Kind, P.R.N. and King, E.J., Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine, J. Clin. Pathol., 1954, vol. 7, no. 4, pp. 322–326.

    Article  CAS  Google Scholar 

  23. Milam, V.G., Moth pests of honeybee combs. Glean, Bee Cult., 1970, vol. 68, pp. 424–428.

    Google Scholar 

  24. Milstead, J.E., Pathophysiological influences of the Heterorhabditis bacteriophora complex on seventh-instar larvae of the Greater Wax Moth, Galleria mellonella: changes in the hemolymph refractive index, J. Invert. Pathol., 1979, vol. 33, no. 3, pp. 274–277.

    Article  Google Scholar 

  25. Owuama, C.I., Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes, World J. Microbiol. Biotechnol., 2001, vol. 17, pp. 505–515.

    Article  CAS  Google Scholar 

  26. Poinar, G.R., Nematodes for Biological Control of Insects, Boca-Raton, Fl: C.R.C., 1979.

    Google Scholar 

  27. Rössner, H., Bestimmung der Chitinase-Aktivität, in Bodenbiologische Arbeitsmethoden, Schinner, F., Öhlinger, R., and Kandeler, E., Eds., Berlin: Springer Verlag, 1991, pp. 66–70.

    Google Scholar 

  28. Salem, H.M., Hussein, M.A., Hafez, S.E., Hussein, M.A., and Sayed, R.M., Ultrastructure changes in the haemocytes of Galleria mellonella larvae treated with gamma irradiated Steinernema carpocapsae BA2, J. Rad. Res. Appl. Sci., 2014, vol. 7, no. 1, pp. 74–79.

    Google Scholar 

  29. Sayed, R.M., Combined effect of gamma radiation and an entomopathogenic nematode on some stored product pests, Ph. D. Thesis, Fac. Sci., Ain Shams Univ., 2011. http://www.iaea.org/inis/collection/NCLCollectionStore/_ Public/45/099/45099886.pdf.

  30. Sayed, R.M. and Shairra, S.A., Enhancing the efficacy of entomopathogenic nematodes by gamma radiation in controlling Spodoptera littoralis larvae, J. Rad. Res. Appl. Sci., 2017, vol. 10, no. 2, pp. 97–102.

    CAS  Google Scholar 

  31. Sayed, R.M., Khidr, A.A., and Moustafa, H.Z., Changes in defense mechanism related to controlling Spodoptera littoralis larvae by gamma irradiated Steinernema carpocapsae BA2, J. Entomol. Res., 2015, vol. 39, no. 4, pp. 287–292.

    Article  CAS  Google Scholar 

  32. Sayed, R.M., Abdalla, R.S., Rizk, S.A., and El Sayed, T.S., Control of Culex pipiens (Diptera: Culicidae), the vector of lymphatic filariasis, using irradiated and non-irradiated entomopathogenic nematode, Steinernema scapterisci (Rhabditida: Steinernematidae), Egypt. J. Biol. Pest Cont., 2018, vol. 28, no. 67, pp. 1–6.

    Article  Google Scholar 

  33. Schmidt, T.M., Bleakley, B., and Nealson, K.H., Characterization of an extracellular protease from the insect pathogen Xenorhabdus luminescens, Appl. Environ. Microbiol., 1988, vol. 54, pp. 2793–2797.

    Article  CAS  Google Scholar 

  34. Shehata, I.E., Studies on the production and application of the bacterial symbionts of the entomopathogenic nematodes for the control of major insect pests of strawberry in Egypt, M. Sci. Thesis, Fac. Sci., Al-Azhar Univ., Egypt, 2010.

  35. Simoes, N., Laumond, C., and Bonifassi, E., Effectiveness of Steinernema sp. and Heterorhabditis sp. against Popillia japonica in the Azores, J. Nematol., 1993, vol. 25, pp. 480–485.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh, N.B. and Sinha, R.N., Carbohydrates, lipids and protein in the development stages of Sitophilus oryzea and Sitophilus grannarius, Ann. Ent. Soc. Ames., 1977, vol. 70, no. 1, pp. 107–111.

    Article  Google Scholar 

  37. Smith, I., Chromatographic and Electrophoretic Techniques, Zone Electrophoresis, vol. 2, 4th ed., William Heiemann Medical Book 5, London, 1976.

  38. Xia, Y., Dean, P., Judge, A.J., Gillespie, J.P., Clarkson, J.M., and Charnley, A.K., Acid phosphatases in the haemolymph of the desert locust, Schistocerca gregaria, infected with the entomopathogenic fungus Metarhizium anisopliae, J. Insect Physiol., 2000, vol. 46, no. 9, pp. 1249–1257.

    Article  CAS  Google Scholar 

  39. Yousef, D.M., Biological and biochemical studies on the effect of parasitic nematodes, some plant extracts and gamma radiation on Callosobruchus maculates (F), M. Sci. Thesis, Fac. Girls, Ain Shams Univ., Egypt, 2006.

  40. Zaghloul, Y.S., Sterility and associated physiological and molecular characteristics in cowpea weevil Callosobruchus maculatus, Ph. D. Thesis, Fac. Sci. Ain Shams Univ., Egypt, 2004, pp. 25–28.

  41. Zollner, N. and Kirsch, K., Microdetermination of lipids by the sulphophosphovanillin reaction, Z. Ges. Exp. Med., 1962, vol. 135, pp. 545–561.

    Article  Google Scholar 

Download references

Funding

All authors decleared that there there was no fund.

Author information

Authors and Affiliations

Authors

Contributions

All authers designed the research, conducted the experiments, analyzed the data, wrote, revised and approved the manuscript.

Corresponding author

Correspondence to R. M. Sayed.

Ethics declarations

All authors decleared that there is no conflicts of interest.

Statement on the welfare of animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, H.M., Hussein, M.A., Hafez, S.E. et al. Influence of Gamma Irradiated Steinernema carpocapsae on Some Physiological Aspects of Galleria mellonella Larvae. Biol Bull Russ Acad Sci 48, 165–171 (2021). https://doi.org/10.1134/S1062359021020102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021020102

Kewwords:

Navigation