Skip to main content
Log in

Transformations of the axial complex of ophiuroids as a result of shifting of the madreporite to the oral side

  • Conference Materials
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

In comparison with Asteroidea, the axial complex of ophiuroids has some important features, which are the result of shifting of the madreporite from the aboral side to the oral side. In contrast to Asteroidea, the stone canal of ophiuroids connects with the water ring from the outside, not from the inside. In Ophiuroidea, the somatocoelomic perihaemal coelom is closer to the mouth than the axocoelomic ring. The water ring of ophiuroids is shifted to the oral side relative to the perihaemal coelomic rings. The genital coelom and gastric haemal ring are located on the outer side of the axial complex, whereas in Asteroidea, they are located on the inner side. The pericardial part of the axial organ is situated on the oral side. The interradial sections of the genital coelom and genital haemal ring are descended to the oral side. Our hypothesis considers that the ancestors of ophiuroids turned the aboral side of the animal to the substratum. It caused shifting of the madreporite to the oral side and closing of the anus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brooks, W.K. and Grave, C., Ophiura brevispina, Mem. Nat. Acad. Sci. Wash., 1899, vol. 5, pp. 79–100.

    Google Scholar 

  • Chia, F.S., The embryology of a brooding starfish Leptasterias hexactis Stimpson, Acta Zool., 1968, vol. 49, no. 3, pp. 321–364.

    Article  Google Scholar 

  • Cuénot, L., Études anatomiques et morphologiques sur les ophiures, Arch. Zool. Exp. Gén., 1888, Ser. 2, vol. 6, pp. 33–82.

    Google Scholar 

  • Cuénot, L., Anatomie, éthologie et systématique des Échinodermes, in Traité de Zoologie, Paris: Masson et C-ie Éditeurs, 1948, vol. 11, pp. 3–272.

    Google Scholar 

  • Ezhova, O.V., Lavrova, E.A., and Malakhov, V.V., Microscopic anatomy of the axial complex organs of the starfish Asterias rubens Linnaeus 1758 (Echinodermata, Asteroidea), Zool. Zh., 2013, vol. 92, no. 2, pp. 131–142. doi 10.1134/S1062359013080049

    Google Scholar 

  • Ezhova, O.V., Lavrova, E.A., and Malakhov, V.V., The morphology of the axial complex and associated structures in Asterozoa (Asteroidea, Echinoidea, Ophiuroidea), Russ. J. Mar. Biol., 2014, vol. 40, no. 3, p. 153–164.

    Article  Google Scholar 

  • Ezhova, O.V., Lavrova, E.A., Ershova, N.A., and Malakhov, V.V., Microscopic anatomy of the axial complex and associated structures in the brittle star Ophiura robusta Ayres, 1854 (Echinodermata, Ophiuroidea), Zoomorphology, 2015, vol. 134, no. 2, pp. 247–258. doi 10.1007/s00435-014-0251-6

    Article  Google Scholar 

  • Fedotov, D.M., Biologie und Metamorphose von Gorgonocephalus, Zool. Anz., 1924, vol. 61, pp. 303–311.

    Google Scholar 

  • Gemmill, J.F., The development of the starfish Solaster endeca Fobes, Trans. Zool. Soc., 1912, vol. 20, no. 1, pp. 1–71.

    Article  Google Scholar 

  • Gemmill, J.F., The development and certain points in the adult structure of the starfish Asterias rubens L., Philos Trans. R. Soc., London, Ser. A, 1914, vol. 205, pp. 213–294.

    Article  Google Scholar 

  • Gemmill, J.F., Double hydrocoele in the development and metamorphosis in the larva of Asterias rubens L., Quart. J. Micr. Sci., 1915, vol. 61, pp. 51–80.

    Google Scholar 

  • Gemmill, J.F., The development of the starfish Crossaster papposus Müller and Troschel, Quart. J. Micr. Sci., 1920, vol. 64, pp. 155–189.

    Google Scholar 

  • Goldschmid, A., Echinodermata, in Spezielle Zoologie. Teil 1. Einzeller und Wirbellose Tiere, Stuttgart: Gustav Fischer Verlag, 1996, pp. 778–834.

    Google Scholar 

  • Goto, S., Some points in metamorphosis of Asterina gibbosa, J. Coll. Sci. Imp. Univ., 1898, vol. 12, pp. 227–242.

    Google Scholar 

  • Hamann, O., Beiträge zur Histologie der Echinodermen, H. 4: Die Anatomie und Histologie der Ophiuren und Crinoiden, Jena: G. Fischer, 1889.

    Google Scholar 

  • O’Hara, T.D., Hugall, A.F., Thuy, B., and Moussalli, A., Phylogenomic resolution of the class Ophiuroidea unlocks a global microfossil record, Curr. Biol., 2014, vol. 24, no. 16, pp. 1874–1879. doi 10.1016/j.cub.2014.06.060

    Article  PubMed  Google Scholar 

  • Hörstadius, S., Über die Entwicklung von Astropecten aurantiacus L., Pubbl. Staz. Zool. Napoli, 1939, vol. 17, no. 2, pp. 221–312.

    Google Scholar 

  • Hyman, L.H., Echinodermata, in The Invertebrates, New York: McGraw-Hill Book Company, 1955, vol. 4.

    Google Scholar 

  • Ivanov, A.V., Polyanskii, Yu.I., and Strelkov, A.A., Bol’shoi praktikum po zoologii bespozvonochnykh (An Extended Practical Course in Invertebrate Zoology), Moscow: Vyssh. Shk., 1985, part 3.

    Google Scholar 

  • Ivanova-Kazas, O.M., Sravnitel’naya embriologiya bespozvonochnykh zhivotnykh: Iglokozhie i polukhordovye (Comparative Embryology of Ivertebrates: Echinoderms and Hemichordates), Moscow: Nauka, 1978.

    Google Scholar 

  • Janies, D., Phylogenetic relationships of extant echinoderm classes, Can. J. Zool., 2001, no. 79, pp. 1232–1250. doi 10.1139/cjz-79-7-1232

    Article  CAS  Google Scholar 

  • Janies, D.A., Voight, J.R., and Daly, M., Echinoderm phylogeny including Xyloplax, a progenetic asteroid, System. Biol., 2011, vol. 60, no. 4, pp. 420–438. doi 10.1093/sysbio/syr044

    Article  Google Scholar 

  • Littlewood, D.T.J., Smith, A.B., Clough, K.A., and Emson, R.H., The interrelationships of the echinoderm classes: morphological and molecular evidence, Biol. J. Linn. Soc., 1997, no. 61, pp. 409–438. doi 10.1111/j.1095-8312.1997.tb01799.x

    Article  Google Scholar 

  • Litvinova, N.M., Feeding of ophiurans, Zool. Zh., 1979, vol. 58, no. 10, pp. 1501–1510.

    Google Scholar 

  • Litvinova, N.M., Feeding methods of some ophiurans species, Zool. Zh., 1980, vol. 59, no. 2, pp. 239–247.

    Google Scholar 

  • Ludwig, H., Trichaster elegans, Z. Wiss. Zool., 1878, vol. 31, pp. 59–67.

    Google Scholar 

  • Ludwig, H., Neue Beiträge zur Anatomie der Ophiuren, Z. Wiss. Zool., 1880, vol. 34, pp. 57–89.

    Google Scholar 

  • Mac Bride, E.W., The development of Asterina gibbosa, Quart. J. Micr. Sci., 1896, vol. 38, pp. 339–411.

    Google Scholar 

  • Mac Bride, E.W., The development of Ophiothrix fragilis, Quart. J. Micr. Sci., 1907, vol. 51, pp. 557–606.

    Google Scholar 

  • Mac Bride, E.W., The development of the genital organs, ovoid gland, axial and aboral sinuses in Amphiura squamata, Quart. J. Micr. Sci., 1892, vol. 34, pp. 129–156.

    Google Scholar 

  • Mooi, R. and David, B., What a new model of skeletal homologies tells us about asteroid evolution, Am. Zool., 2000, no. 40, pp. 326–339. doi 10.1093/icb/40.3.326

    Google Scholar 

  • Narasimhamurti, N., The development of Ophiocoma nigra, Quart. J. Micr. Sci., 1933, vol. 76, pp. 63–88.

    Google Scholar 

  • Olsen, H., The development of the brittle-star Ophiopholis aculeata with a short report on the outer hyaline layer, Bergens Mus. Aarbok. Natur., 1942, vol. 6, pp. 1–107.

    Google Scholar 

  • Osterud, H.L., Preliminary observations on the development of Leptasterias hexactis, Publ. Puget Sound Biol., 1918, vol. 2, pp. 1–15.

    Google Scholar 

  • Perseke, M., Bernhard, D., Fritzsch, G., Brümmer, F., Stadler, P.F., and Schlegel, M., Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: insights in phylogenetic relationships of Echinodermata, Mol. Phylogenet. Evol., 2010, no. 56, pp. 201–211. doi 10.1016/j.ympev.2010.01.035

    Article  CAS  PubMed  Google Scholar 

  • Reichensperger, A., Zur Kenntnis der Genus Ophiopsila, Z. Wiss. Zool., 1908, vol. 89, pp. 173–192.

    Google Scholar 

  • Ruppert, E.E., Fox, R.S., and Barnes, R.D., Invertebrate Zoology, Belmont: Thomson Brooks/Cole, 2004, vol. 28, pp. 872–929.

    Google Scholar 

  • Smith, J.E., The reproductive system and associated organs of the brittle star Ophiothrix fragilis, Quart. J. Micr. Sci., 1940, vol. 82, pp. 267–310.

    Google Scholar 

  • Smith, A.B., Classification of the Echinodermata, Palaeontology, 1984, no. 27, pp. 431–459.

    Google Scholar 

  • Smith, A.B. and Reich, M., Tracing the evolution of the holothurian body plan through stem-group fossils, Biol. J. Linn. Soc., 2013, no. 109, pp. 670–681. doi 10.1111/bij.12073

    Article  Google Scholar 

  • Ziegler, A., Faber, C., and Bartolomaeus, T., Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea), Front. Zool., 2009, vol. 6, no. 10, pp. 1–31. doi 10.1186/1742-9994-6-10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Ezhova.

Additional information

Original Russian Text © O.V. Ezhova, E.A. Egorova, V.V. Malakhov, 2016, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2016, No. 6, pp. 576–584.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezhova, O.V., Egorova, E.A. & Malakhov, V.V. Transformations of the axial complex of ophiuroids as a result of shifting of the madreporite to the oral side. Biol Bull Russ Acad Sci 43, 494–502 (2016). https://doi.org/10.1134/S1062359016060091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359016060091

Navigation