Skip to main content
Log in

Number, viability, and diversity of the filterable forms of prokaryotes in sphagnous high-moor peat

  • Microbiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The number, potential viability, and taxonomic diversity (at the level of phylum) of the filterable forms of prokaryotes (FFP) are estimated in the main genetic horizons of high-moor peat. It was shown that the number of FFP reached 500 million cells in 1 g, i.e., up to 5% of the general size bacteria. The portion of viable cells among FFP (93–98%) was higher than that for the general size bacteria (60–68%). FISH-analysis (fluorescence in situ hybridization) showed that FFP contained the same phylogenetic groups as the population of general size bacteria (domain Archea and phylum Actinobacteria, Cytophaga, and Proteobacteria of the domain Bacteria).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anan’eva, N.D. and Nikitin, D.I., Bacterial cell size in some soils, Pochvovedenie, 1979, no. 4, pp. 132–135.

    Google Scholar 

  • Dedysh, S.N., Belova, S.E., Bodelier, P.L.E., et al., Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing “signature” fatty acids of type I methanotrophs, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 472–479.

    Article  CAS  PubMed  Google Scholar 

  • Dobrovol’skaya, T.G., Golovchenko, A.V., and Pozdnyakov, A.I., Vertical structure of bacterial communities in peats of the Yakhroma River floodplain, Biol. Bull. (Moscow), 2007, vol. 34, no. 5, pp. 526–531.

    Article  Google Scholar 

  • Duda, V.I., Suzina, N.E., Akimov, V.I., et al., Ultrastructural organization and development cycle of soil ultramicrobacteria belonging to the class Alphaproteobacteria, Microbiology (Moscow), 2007, vol. 76, no. 5, pp. 575–584.

    Article  CAS  Google Scholar 

  • Duda, V.I., Suzina, N.E., Polivtseva, V.N., and Boronin, A.M., Ultramicrobacteria: formation of the concept and contribution of ultramicrobacteria to biology, Microbiology (Moscow), 2012, vol. 81, no. 4, pp. 379–390.

    Article  CAS  Google Scholar 

  • Folk, R.L., Nanobacteria and the precipitation of carbonate in unusual environments, Sediment. Geol., 1999, vol. 126, pp. 47–55.

    Article  CAS  Google Scholar 

  • Golovchenko, A.V., Tikhonova, E.Yu., and Zvyagintsev, D.G., Abundance, biomass, structure, and activity of the micro-bial complexes of minerotrophic and ombrotrophic peatlands, Microbiology (Moscow), 2007, vol. 76, no. 5, pp. 630–638.

    Article  CAS  Google Scholar 

  • Horn, M.A., Matthies, C., Kusel, K., et al., Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat, Appl. Environ. Microbiol., 2003, vol. 69, no. 1, pp. 74–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kajander, E.O. and Ciftcioglu, N., Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation, Proc. Natl. Acad. Sci. USA, 1998, vol. 29, pp. 8274–8279.

    Article  Google Scholar 

  • Kotsyurbenko, O.R., Friedrich, M.W., Simankova, M.V., et al., Shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH and isolation of an acidophilic Methanobacterium strain, Appl. Environ. Microbiol., 2007, vol. 3, no. 3, pp. 1128–1137.

    Google Scholar 

  • LIVE/DEAD BacLight Bacterial Viability Kit for microscopy and quantitative Assays, Product Inform. Molecular Probes, 2004, pp. 1–8. http://biology.fullerton.edu/facilities/em/Library/LiveDead.pdf

  • Lysak, L.V., Lapygina, E.V., Bakulina, E.A., and Zvyagintsev, D.G., Assessment of the state of soil bacteria after shock, Byul. MOIP, 2007, vol. 112, no. 1, pp. 63–67.

    Google Scholar 

  • Lysak, L.V., Lapygina, E.V., Konova, I.A., and Zvyagintsev, D.G., Definition of the physiological condition of bacteria in soil by means of luminescent dye L7012, Biol. Bull. (Moscow), 2009a, vol. 36, no. 6, pp. 639–642.

    Article  CAS  Google Scholar 

  • Lysak, L.V., Lapygina, E.V., and Konova, I.A., The physiological status of bacteria in soil, Eurasian Soil Sci., 2009b, vol. 42, no. 13.

    Google Scholar 

  • Lysak, L.V., Lapygina, E.V., Konova, I.A., and Zvyagintsev, D.G., Population density and taxonomic composition of bacterial nanoforms in soils of Russia, Eurasian Soil. Sci., 2010, vol. 43, no. 7, pp. 765–770.

    Article  Google Scholar 

  • Manucharova, N.A., Identifikatsiya metabolicheski aktivnykh kletok prokariot v pochvakh s primeneniem molekulyarno-biologicheskogo fluorestsentno-mikroskopicheskogo metoda analiza fluorescence in situ hybridization (FISH). Uchebnoe posobie (Identification of Metabolically Active Prokaryotic Cells in Soils Using the Molecular-Biological Fluorescence Microscopy Analysis—Fluorescence in situ Hybridization (FISH): Tutorial), Moscow: Izd. MGU, 2008.

    Google Scholar 

  • Metody pochvennoi biokhimii i mikrobiologii (Methods of Soil Microbiology and Biochemistry), Zvyagintsev, D.G., Ed., Moscow: Izd. MGU, 1991.

    Google Scholar 

  • Mishustina, I.E. and Kalyuzhnaya, T.V., Ultramicroforms of bacteria in soil and sea, Izv. Akad. Nauk, Ser. Biol., 1987, no. 5, pp. 686–698.

    Google Scholar 

  • Morita, R.Y., Starvation and miniaturization of heterotrophs, with special emphasis on maintenance of starved viable state, in Bacteria in Their Natural Environment, Fletcher, M. and Floodgate, G.D., Eds., London: Acad. Press, 1988, pp. 111–130.

    Google Scholar 

  • Nikitin, D.I., Application of electron microscopy to study soil suspension, Pochvovedenie, 1964, no. 6, pp. 86–91.

    Google Scholar 

  • Panikov, N.S., Contribution of nanosized bacteria to the total biomass and activity of soil microbial community, Adv. Appl. Microbiol., 2005, vol. 57, pp. 245–296.

    Article  CAS  PubMed  Google Scholar 

  • Pankratov, T.A., Belova, S.E., and Dedysh, S.N., Evaluation of the phylogenetic diversity of prokaryotic microorganisms in Sphagnum peat bogs by means of fluorescence in situ hybridization (FISH), Microbiology (Moscow), 2005, vol. 74, no. 6, pp. 722–728.

    Article  CAS  Google Scholar 

  • Sizova, M.V., Panikov, N.S., Tourova, T.P., et al., Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a sphagnum peat bog, FEMS Microbiol. Ecol., 2003, vol. 45, pp. 301–315.

    Article  CAS  PubMed  Google Scholar 

  • Soina, V.S., Lysak, L.V., Konova, I.A, et al., Study of ultramicrobacteria (nanoforms) in soils and subsoil deposits by electron microscopy, Eurasian Soil Sci., 2012, vol. 45, no. 11, pp. 1048–1056.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Lysak.

Additional information

Original Russian Text © L.V. Lysak, E.V. Lapygina, M.S. Kadulin, I.A. Konova, 2014, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2014, No. 3, pp. 241–245.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysak, L.V., Lapygina, E.V., Kadulin, M.S. et al. Number, viability, and diversity of the filterable forms of prokaryotes in sphagnous high-moor peat. Biol Bull Russ Acad Sci 41, 228–232 (2014). https://doi.org/10.1134/S1062359014030066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359014030066

Keywords

Navigation