Skip to main content
Log in

Possibilities and Limitations of Various X-ray Fluorescence Techniques in Studying the Chemical Composition of Ancient Ceramics

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

An overview of publications dedicated to the application of various X-ray fluorescence techniques for investigating the chemical composition of ancient ceramics and clays is presented. Examples of conventional wavelength dispersive and energy dispersive X-ray fluorescence spectrometers, portable X-ray analyzers, spectrometers with polycapillary optics (micro X-ray fluorescence spectrometry), and total reflection geometry are considered. Although X-ray fluorescence serves as the analytical signal in all cases, the listed X‑ray fluorescence techniques differ in the range of analytes, methods of sample preparation, and methods for calculating element concentrations. The author experience in applying the described techniques of X-ray fluorescence spectrometry to a comprehensive study of archaeological materials from the Stone Age for the historical reconstruction of economic activities in the Baikal Siberia population is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Berdnikov, I.M. and Lokhov, D.N., Keramika v arkheologii: opisanie, analiz, metody issledovaniya (Ceramics in Archeology: Description, Analysis, Research Methods), Irkutsk: Irkutsk. Gos. Univ., 2014.

  2. Cechak, T., Hlozek, M., Musilek, L., and Trojek, T., Nucl. Instrum. Methods Phys. Res., Sect. A, 2007, vol. 580, no. 1, p. 717. https://doi.org/10.1016/j.nima.2007.05.133

    Article  CAS  Google Scholar 

  3. Revenko, A.G. and Revenko, V.A., Metody Ob”ekty Khim. Anal., 2007, vol. 2, no. 1, p. 4.

    Google Scholar 

  4. Tsyzin, G.I. and Zolotov, Yu.A., Zh. Analit. Khim., 2021, vol. 76, no. 4, p. 369. https://doi.org/10.31857/S0044450221040137

    Article  Google Scholar 

  5. Pashkova, G.V., Mukhamedova, M.M., Chubarov, V.M., Mal’tsev, A.S., Amosova, A.A., Demonterova, E.I., Mikheeva, E.A., Shergin, D.L., and Pellinen, V.A., Anal. Kontrol’, 2021, vol. 25, no. 1, p. 20. https://doi.org/10.15826/analitika.2020.25.1.001

    Article  Google Scholar 

  6. Maltsev, A.S., Pashkova, G.V., Fernandez-Ruiz, R., Demonterova, E.I., Shuliumova, A.N., Umarova, N.N., Shergin, D.L., Mukhamedova, M.M., Chubarov, V.M., and Mikheeva, E.A., Spectrochim. Acta, Part B, 2021, vol. 175, 106012. https://doi.org/10.1016/j.sab.2020.106012

    Article  CAS  Google Scholar 

  7. Maltsev, A.S., Umarova, N.N., Pashkova, G.V., Mukhamedova, M.M., Shergin, D.L., Panchuk, V.V., Kirsanov, D.O., and Demonterova, E.I., Molecules, 2023, vol. 28, no. 3, 1099. https://doi.org/10.3390/molecules28031099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pashkova, G.V., Statkus, M.A., Mukhamedova, M.M., Finkelshtein, A.L., Abdrashitova, I.V., Belozerova, O.Y., Chubarov, V.M., Amosova, A.A., Maltsev, A.S., Demonterova, E.I., and Shergin, D.L., Heritage, 2023, vol. 6, p. 4434. https://doi.org/10.3390/heritage6050234

    Article  Google Scholar 

  9. Koval’, V.Yu., Pervichnaya fiksatsiya massovogo keramicheskogo materiala (na pamyatnikakh epokhi Srednevekov’ya i rannego zheleznogo veka lesnoi zony Vostochnoi Evropy) (Primary Fixation of Mass Ceramic Material (On Monuments of the Middle Ages and Early Iron Age of the Forest Zone of Eastern Europe)), Moscow: Inst. Arkheol. Ross. Akad. Nauk, 2016.

  10. Glushkov, I.G., Keramika kak istoricheskii istochnik (Ceramics as a Historical Source), Novosibirsk: Inst. Arkheol. Etnogr. Sib. Otd. Ross. Akad. Nauk, 1996.

  11. Krasnova, T.N., Zh. Inst. Naslediya, 2020, vol. 20, no. 1, p. 11. https://doi.org/10.34685/HI.2020.77.73.010

    Article  Google Scholar 

  12. Hall, M., in The Oxford Handbook of Archaeological Ceramic Analysis, Hunt, A., Ed., Oxford: Oxford Univ. Press, 2016, p. 341. https://doi.org/10.1093/oxfordhb/9780199681532.013.21

    Book  Google Scholar 

  13. Boulanger, M.T., Fehrenbach, S.S., and Glascock, M.D., Archaeometry, 2013, vol. 55, no. 5, p. 880. https://doi.org/10.1111/j.1475-4754.2012.00706.x

    Article  CAS  Google Scholar 

  14. De La Fuente, G.A., Bol. Lab. Petrol. Conserv. Ceram., 2008, vol. 1, no. 2, p. 21.

    Google Scholar 

  15. Revenko, A.G., Rentgenospektral’nyi fluorestsentnyi analiz prirodnykh materialov (X-Ray Spectral and Fluorescent Analysis of Natural Materials), Novosibirsk: Nauka, 1994.

  16. Revenko, A.G., X-Ray Spectrom., 2002, vol. 31, no. 3, p. 264. https://doi.org/10.1002/xrs.564

    Article  CAS  Google Scholar 

  17. Revenko, A.G., Anal. Kontrol’, 2002, vol. 6, no. 3, p. 231.

    Google Scholar 

  18. Finkel’shtein, A.L. and Afonin, V.P., in Metody rentgenospektral’nogo analiza (Methods of X-Ray Spectral Analysis), Lontsikh, S.V., Ed., Novosibirsk: Nauka, 1986, p. 5.

  19. Klein, M., Jesse, F., Kasper, H.U., and Golden, A., Archaeometry, 2004, vol. 46, no. 3, p. 339. https://doi.org/10.1111/j.1475-4754.2004.00162.x

    Article  CAS  Google Scholar 

  20. Bouquillon, A., Appl. Phys. A: Mater. Sci. Process., 2004, vol. 79, no. 2, p. 161. https://doi.org/10.1007/s00339-004-2507-3

    Article  CAS  Google Scholar 

  21. Zhu, D., Cheng, H.S., Lin, J.W., and Yang, F.J., Nucl. Instrum. Methods Phys. Res., Sect. B, 2006, vol. 249, p. 633. https://doi.org/10.1016/j.nimb.2006.03.070

    Article  CAS  Google Scholar 

  22. Gazulla, M.F., Vicente, S., Orduna, M., and Ventura, M.J., X-Ray Spectrom., 2012, vol. 41, no. 3, p. 176. https://doi.org/10.1002/xrs.2381

    Article  CAS  Google Scholar 

  23. Ravisankar, R., Naseerutheen, A., Raja Annamalai, G., Chandrasekaran, A., Rajalakshmi, A., Kanagasabapathy, K.V., Prasad, M.V.R., and Satpathy, K.K., Spectrochim. Acta, Part A, 2014, vol. 121, p. 457. https://doi.org/10.1016/j.saa.2013.10.110

  24. De Vleeschouwer, F., Renson, V., Claeys, P., Nys, K., and Bindler, R., Geoarchaeology, 2011, vol. 26, no. 3, p. 440. https://doi.org/10.1002/gea.20353

    Article  Google Scholar 

  25. Moroni, B. and Conti, C., Appl. Clay Sci., 2006, vol. 33, nos. 3–4, p. 230. https://doi.org/10.1016/j.clay.2006.05.002

    Article  CAS  Google Scholar 

  26. Fabbri, B., Gualtieri, S., Mingazzini, C., Spadea, P., Casadio, P., Costantini, R., and Malisani, G., Archaeometry, 2000, vol. 42, no. 2, p. 317. https://doi.org/10.1111/j.1475-4754.2000.tb00884.x

    Article  CAS  Google Scholar 

  27. Hein, A., Tsolakidou, A., Iliopoulos, I., Mommsen, H., Buxeda i Garrigós, J., Montana, G., and Kilikoglou, V., Analyst, 2002, vol. 127, no. 4, p. 542. https://doi.org/10.1039/B109603F

    Article  CAS  PubMed  Google Scholar 

  28. Oruzbaeva, G.T. and Kasymova, M.T., Izv. Vyssh. Uchebn. Zaved., Stroit., 2019, no. 3, p. 101. https://doi.org/10.32683/0536-1052-2019-723-3-101-108

  29. Beltrame, M., Liberato, M., Mirão, J., Santos, H., Barrulas, P., Branco, F., Gonçalves, L., Candeias, A., and Schiavon, N., J. Archaeol. Sci. Rep., 2019, vol. 23, p. 910. https://doi.org/10.1016/j.jasrep.2018.11.029

    Article  Google Scholar 

  30. Georgiou, C.D., Sun, H.J., McKay, C.P., Grintzalis, K., Papapostolou, I., Zisimopoulos, D., Panagiotidis, K., Zhang, G., Koutsopoulou, E., Christidi, G.E., and Margiolaki, I., Nat. Commun., 2015, vol. 6, no. 1, 7100. https://doi.org/10.1038/ncomms8100

    Article  CAS  PubMed  Google Scholar 

  31. Longobucco, R., Anal. Chem., 1962, vol. 34, p. 1263. https://doi.org/10.1021/ac60190a021

    Article  CAS  Google Scholar 

  32. Müller, N.S., Hein, A., Georgakopoulou, M., Kilikoglou, V., and Kiriatzi, E., J. Archaeol. Sci. Rep., 2018, vol. 21, p. 929. https://doi.org/10.1016/j.jasrep.2017.09.023

    Article  Google Scholar 

  33. Menne, J., Holzheid, A., and Heilmann, C., Minerals, 2020, vol. 10, p. 931. https://doi.org/10.3390/min10100931

    Article  CAS  Google Scholar 

  34. Georgakopoulou, M., Hein, A., Muller, N.S., and Kiriatzi, E., X-Ray Spectrom., 2017, vol. 46, no. 3, p. 186. https://doi.org/10.1002/xrs.2745

    Article  CAS  Google Scholar 

  35. Ichikawa, S., Matsumoto, T., and Nakamura, T., Anal. Methods, 2016, vol. 8, no. 22, p. 4452. https://doi.org/10.1039/c6ay01061j

    Article  CAS  Google Scholar 

  36. Hein, A., Dobosz, A., Day, P.M., and Kilikoglou, V., J. Archaeol. Sci., 2021, vol. 133, 105436. https://doi.org/10.1016/j.jas.2021.105436

    Article  Google Scholar 

  37. Papachristodoulou, C., Oikonomou, A., Ioannides, K., and Gravani, K., Anal. Chim. Acta, 2006, vols. 573–574, p. 347. https://doi.org/10.1016/j.aca.2006.02.012

    Article  CAS  PubMed  Google Scholar 

  38. Ichikawa, S., Nakayama, K., and Nakamura, T., X-Ray Spectrom., 2012, vol. 41, no. 5, p. 288. https://doi.org/10.1002/xrs.2394

    Article  CAS  Google Scholar 

  39. Tsolakidou, A. and Kilikoglou, V., Anal. Bioanal. Chem., 2002, vol. 374, no. 3, p. 566. https://doi.org/10.1007/s00216-002-1444-2

    Article  CAS  PubMed  Google Scholar 

  40. Buxeda i Garrigos, J., Cau Ontiveros, M.A., and Kilikoglou, V., Archaeometry, 2003, vol. 45, no. 1, p. 1. https://doi.org/10.1111/1475-4754.00093

    Article  Google Scholar 

  41. Ichikawa, S. and Nakamura, T., Spectrochim. Acta, Part B, 2014, vol. 96, p. 40. https://doi.org/10.1016/j.sab.2014.04.002

    Article  CAS  Google Scholar 

  42. Nakayama, K., Ichikawa, S., and Nakamura, T., X-Ray Spectrom., 2011, vol. 41, no. 1, p. 16. https://doi.org/10.1002/xrs.1371

    Article  CAS  Google Scholar 

  43. Ivanov, A.V., Demonterova, E.I., Revenko, A.G., Sharygin, I.S., Kozyreva, E.A., and Alekseev, S.V., Geodin. Tektonofiz., 2022, vol. 13, no. 2, p. 0582. https://doi.org/10.5800/GT-2022-13-2-0582

  44. Skuzovatov, S.Yu., Belozerova, O.Yu., Vasil’eva, I.E., Zarubina, O.V., Kaneva, E.V., Sokol’nikova, Yu.V., and Chubarov, V.M., Geodin. Tektonofiz., 2022, vol. 13, no. 2, p. 0585. https://doi.org/10.5800/GT-2022-13-2-0585

  45. Amosova, A.A., Panteeva, S.V., Tatarinov, V.V., Chubarov, V.M., and Finkel’shtein, A.L., Anal. Kontrol’, 2015, vol. 19, no. 2, p. 130. https://doi.org/10.15826/analitika.2015.19.2.009

    Article  Google Scholar 

  46. Amosova, A.A., Panteeva, S.V., Chubarov, V.M., and Finkelshtein, A.L., Spectrochim. Acta, Part B, 2016, vol. 122, p. 62. https://doi.org/10.1016/j.sab.2016.06.001

    Article  CAS  Google Scholar 

  47. Hunt, A.M.W. and Speakman, R.J., J. Archaeol. Sci., 2015, vol. 53, p. 626. https://doi.org/10.1016/j.jas.2014.11.031

    Article  CAS  Google Scholar 

  48. Frahm, E. and Doonan, R.C.P., J. Archaeol. Sci., 2013, vol. 40, p. 1425. https://doi.org/10.1016/j.jas.2012.10.013

    Article  CAS  Google Scholar 

  49. Frahm, E., J. Archaeol. Sci., 2018, vol. 90, p. 12. https://doi.org/10.1016/j.jas.2017.12.002

    Article  CAS  Google Scholar 

  50. Braekmans, D., Boschloos, V., Hameeuw, H., and Van der Perre, A., Microchem. J., 2019, vol. 145, p. 1207. https://doi.org/10.1016/j.microc.2018.12.029

    Article  CAS  Google Scholar 

  51. Bonizzoni, L., Galli, A., Gondola, M., and Martini, M., X-Ray Spectrom., 2013, vol. 42, no. 4, p. 262. https://doi.org/10.1002/xrs.2465

    Article  CAS  Google Scholar 

  52. Speakman, R.J., Little, N.C., Creel, D., Miller, M.R., and Iñañez, J.G., J. Archaeol. Sci., 2011, vol. 38, p. 3483. https://doi.org/10.1016/j.jas.2011.08.011

    Article  Google Scholar 

  53. Forster, N., Grave, P., Vickery, N., and Kealhofer, L., X-Ray Spectrom., 2011, vol. 40, p. 389. https://doi.org/10.1002/xrs.1360

    Article  CAS  Google Scholar 

  54. Aimers, J.J., Farthing, D.J., and Shugar, A.N., in Handheld XRF for Art and Archaeology, Shugar, A.N. and Mass, J.L., Eds., Leuven: Leuven Univ., 2013, p. 423. https://doi.org/10.2307/j.ctt9qdzfs.17

    Book  Google Scholar 

  55. Lemiere, B., J. Geochem. Explor., 2018, vol. 188, p. 350. https://doi.org/10.1016/j.gexplo.2018.02.006

    Article  CAS  Google Scholar 

  56. Conrey, R.M., Goodman-Elgar, M., Bettencourt, N., Seyfarth, A., Van Hoose, A., and Wolff, J.A., Geochem.: Explor., Environ., Anal., 2014, vol. 14, p. 291. https://doi.org/10.1144/geochem2013-198

    Article  CAS  Google Scholar 

  57. Kabatov, S.A., Kurochkina, S.A., and Alibekov, S.Ya., in Arkheologiya Podmoskov’ya: Materialy nauchnogo seminara (Archeology of the Moscow Region: Proc. Sci. Seminar), Egnovatova, A.V., Ed., Moscow: Inst. Arkeol. Ross. Akad. nauk, 2017, no. 13, p. 188.

  58. Ceccarelli, L., Rossetti, I., Primavesi, L., and Stoddart, S., J. Archaeol. Sci. Rep., 2016, vol. 10, p. 253. https://doi.org/10.1016/j.jasrep.2016.10.002

    Article  Google Scholar 

  59. Hein, A. and Kilikoglou, V., J. Archaeol. Sci. Rep., 2017, vol. 16, p. 564. https://doi.org/10.1016/j.jasrep.2017.03.020

    Article  Google Scholar 

  60. LeMoine, J.B. and Halperin, C.T., J. Archaeol. Sci. Rep., 2021, vol. 36, 102819. https://doi.org/10.1016/j.jasrep.2021.102819

    Article  Google Scholar 

  61. Johnson, J., J. Archaeol. Method Theory, 2012, vol. 21, p. 563. https://doi.org/10.1007/s10816-012-9162-3

    Article  Google Scholar 

  62. Marino, M.D., Stoner, W.D., Fargher, L.F., and Glascock, M.D., J. Archaeol. Sci. Rep., 2022, vol. 41, 103315. https://doi.org/10.1016/j.jasrep.2021.103315

    Article  Google Scholar 

  63. García-Heras, M., Fernández-Ruiz, R., and Tornero, J.D., J. Archaeol. Sci., 1997, vol. 24, p. 1003. https://doi.org/10.1006/jasc.1996.0178

    Article  Google Scholar 

  64. García-Heras, M., Blackman, M.J., Fernández-Ruiz, R., and Bishop, R.L., Archaeometry, 2001, vol. 43, p. 325. https://doi.org/10.1111/1475-4754.00020

    Article  Google Scholar 

  65. Bohus, L.S., de Antczak, M.M.M., Greaves, E.D., Antczak, A., Bermudez, J., Kasztovszky, Z., Poirier, T., and Simonits, A., J. Radioanal. Nucl. Chem., 2005, vol. 265, p. 247. https://doi.org/10.1007/s10967-005-0816-4

    Article  CAS  Google Scholar 

  66. Fernández-Ruiz, R. and García-Heras, M., Spectrochim. Acta, Part B, 2007, vol. 62, p. 1123. https://doi.org/10.1016/j.sab.2007.06.015

    Article  CAS  Google Scholar 

  67. Horcajada, P., Roldán, C., Vidal, C., Rodenas, I., Carballo, J., Murcia, S., and Juanes, D., Radiat. Phys. Chem., 2014, vol. 97, p. 275. https://doi.org/10.1016/j.radphyschem.2013.12.016

    Article  CAS  Google Scholar 

  68. Cariati, F., Fermo, P., Gilardoni, S., Galli, A., and Milazzo, M., Spectrochim. Acta, Part B, 2003, vol. 58, p. 177. https://doi.org/10.1016/s0584-8547(02)00253-7

    Article  Google Scholar 

  69. Allegretta, I., Ciasca, B., Pizzigallo, M.D.R., Lattanzio, V.M.T., and Terzano, R., Appl. Clay Sci., 2019, vol. 180, 105201. https://doi.org/10.1016/j.clay.2019.105201

    Article  CAS  Google Scholar 

  70. Fernández-Ruiz, R. and García-Heras, M., Spectrochim. Acta, Part B, 2008, vol. 63, p. 975. https://doi.org/10.1016/j.sab.2008.06.004

    Article  CAS  Google Scholar 

  71. Ponomarenko, V.O., Sarychev, D.A., and Vodolazhskaya, L.N., Vestn. Yuzh. Nauchn. Tsentra Ross. Akad. Nauk, 2012, vol. 8, no. 1, p. 9.

    Google Scholar 

  72. Mal’tsev, A.S. and Pashkova, G.V., Geodin. Tektonofiz., 2022, vol. 13, no. 2, 0601. https://doi.org/10.5800/GT-2022-13-2s-060

  73. Adams, F., Adriaens, A., Aerts, A., De Raedt, I., Janssens, K., and Schaim, O., J. Anal. At. Spectrom., 1997, vol. 12, p. 257. https://doi.org/10.1039/A606091I

    Article  CAS  Google Scholar 

  74. Pella, P.A. and Lankosz, M., X-Ray Spectrom., 1997, vol. 26, p. 327. https://doi.org/10.1002/(SICI)1097-4539(199711/12)26:6<327::AID-XRS230>3.0.CO;2-5

    Article  CAS  Google Scholar 

  75. Kazakis, N.A., Sakalis, A.J., Tsiafakis, D., and Tsirliganis, N.C., Mediterr. Archaeol. Archaeom., 2015, vol. 15, no. 3, p. 73. https://doi.org/10.5281/zenodo.18359

    Article  Google Scholar 

  76. Holakooei, P., de Lapérouse, J.-F., Carò, F., Röhrs, S., Franke, U., Müller-Wiener, M., and Reiche, I., J. Archaeol. Sci. Rep., 2019, vol. 24, p. 759. https://doi.org/10.1016/j.jasrep.2019.02.029

    Article  Google Scholar 

  77. Eftekhari, N., Holakooei, P., Sayyadshahri, H., and Vaccaro, C., J. Archaeol. Sci. Rep., 2018, vol. 22, p. 100. https://doi.org/10.1016/j.jasrep.2018.09.012

    Article  Google Scholar 

  78. Berthold, C., Zimmer, K.B., Scharf, O., Koch-Brinkmann, U., and Bente, K., J. Archaeol. Sci. Rep., 2017, vol. 16, p. 513. https://doi.org/10.1016/j.jasrep.2016.02.008

    Article  Google Scholar 

  79. Chaves, R.C., Lima, A., Coroado, J., Teixeira, A., Vilarigues, M., Leal, N., Karra, A., and Monge Soares, A.M., J. Archaeol. Sci. Rep., 2018, vol. 21, p. 1152. https://doi.org/10.1016/j.jasrep.2017.10.037

    Article  Google Scholar 

  80. Demirsar, ArliB., Simsek, FranciG., Kaya, S., Arli, H., and Colomban, P., Heritage, 2020, vol. 3, p. 130. https://doi.org/10.3390/heritage3040072

    Article  Google Scholar 

  81. Papadopoulou, D.N., Zachariadis, G.A., Anthemidis, A.N., Tsirliganis, N.C., and Stratis, J.A., Spectrochim. Acta, Part B, 2004, vol. 59, no. 12, p. 1877. https://doi.org/10.1016/j.sab.2004.09.001

    Article  CAS  Google Scholar 

  82. Papadopoulou, D., Sakalis, A., Merousis, N., and Tsirliganis, N.C., Nucl. Instrum. Methods Phys. Res., Sect. A, 2007, vol. 580, no. 1, p. 743. https://doi.org/10.1016/j.nima.2007.05.138

    Article  CAS  Google Scholar 

  83. Flewett, S., Saintenoy, T., Sepulveda, M., Mosso, E.F., Robles, C., Vega, K., Gutierrez, S., Romero, A., Finney, L., Maxey, E., and Vogt, S., Appl. Spectrosc., 2016, vol. 70, no. 10, p. 1759. https://doi.org/10.1177/0003702816654153

    Article  CAS  PubMed  Google Scholar 

  84. Sakalis, A.J., Kazakis, N.A., Merousis, N., and Tsirliganis, N.C., J. Cult. Heritage, 2013, vol. 14, no. 6, p. 485. https://doi.org/10.1016/j.culher.2012.11.005

    Article  Google Scholar 

  85. Jaroszewicz, J., De Nolf, W., Janssens, K., Michalski, A., and Falkenberg, G., Anal. Bioanal. Chem., 2008, vol. 391, p. 1129. https://doi.org/10.1007/s00216-008-2097-6

    Article  CAS  PubMed  Google Scholar 

  86. Papadopoulou, D., Zachariadis, G., Anthemidis, A., Tsirliganis, N., and Stratis, J., Talanta, 2006, vol. 68, p. 1692. https://doi.org/10.1016/j.talanta.2005.08.051

    Article  CAS  PubMed  Google Scholar 

  87. Machado, A.S., Oliveira, D.F., Gama, FilhoH.S., Latini, R., Bellido, A.V.B., Assis, J.T., Anjos, M.J., and Lopes, R.T., X-Ray Spectrom., 2017, vol. 46, p. 427. https://doi.org/10.1002/xrs.2786

    Article  CAS  Google Scholar 

  88. González, I., Romero-Baena, A., Galán, E., Miras, A., Castilla-Alcántara, J.C., and Campos, P., Appl. Clay Sci., 2018, vol. 166, p. 38. https://doi.org/10.1016/j.clay.2018.09.003

    Article  CAS  Google Scholar 

  89. Schurr, M.R., Donohue, P.H., Simonetti, A., and Dawson, E.L., J. Archaeol. Sci. Rep., 2018, vol. 20, p. 390. https://doi.org/10.1016/j.jasrep.2018.05.014

    Article  Google Scholar 

  90. Panchuk, V., Yaroshenko, I., Legin, A., Semenov, V., and Kirsanov, D., Anal. Chim. Acta, 2018, vol. 1040, p. 19. https://doi.org/10.1016/j.aca.2018.05.023

    Article  CAS  PubMed  Google Scholar 

  91. Seetha, D. and Velraj, G., Spectrochim. Acta, Part A, 2015, vol. 149, p. 59. https://doi.org/10.1016/j.saa.2015.04.041

    Article  CAS  Google Scholar 

  92. Seetha, D. and Velraj, G., Radiat. Phys. Chem., 2019, vol. 162, p. 114. https://doi.org/10.1016/j.radphyschem.2019.03.017

    Article  CAS  Google Scholar 

  93. Araujo, C.S., Appoloni, C.R., Ikeoka, R.A., and Symanski, L.C.P., Appl. Radiat. Isot., 2022, vol. 191, 110560. https://doi.org/10.1016/j.apradiso.2022.110560

    Article  CAS  PubMed  Google Scholar 

  94. Ikeoka, R.A., Appoloni, C.R., Rizzutto, M.A., and Bandeira, A.M., Microchem. J., 2018, vol. 138, p. 384. https://doi.org/10.1016/j.microc.2017.12.020

    Article  CAS  Google Scholar 

  95. Liritzis, I., Xanthopoulou, V., Palamara, E., Papageorgiou, I., Iliopoulos, I., Zacharias, N., Vafiadou, A., and Karydas, A.G., J. Cult. Heritage, 2020, vol. 46, p. 61. https://doi.org/10.1016/j.culher.2020.06.004

    Article  Google Scholar 

  96. Jasiewicz, J., Niedzielski, P., Krueger, M., Hildebrandt-Radke, I., and Michalowski, A., J. Archaeol. Sci. Rep., 2021, vol. 39, 103177. https://doi.org/10.1016/j.jasrep.2021.103177

    Article  Google Scholar 

  97. Barone, G., Crupi, V., Longo, F., Majolino, D., Mazzoleni, P., Spagnolo, G., Venuti, V., and Aquilia, E., X-Ray Spectrom., vol. 40, no. 5, p. 333. https://doi.org/10.1002/xrs.1347

  98. Emmitt, J.J., McAlister, A.J., Phillipps, R.S., and Holdaway, S.J., Archaeol. Sci. Rep., 2018, vol. 17, p. 422. https://doi.org/10.1016/j.jasrep.2017.11.024

    Article  Google Scholar 

  99. Fornacelli, C., Volpi, V., Ponta, E., Russo, L., Briano, A., Donati, A., Giamello, M., and Bianchi, G., Appl. Sci., 2021, vol. 11, no. 24, p. 11859. https://doi.org/10.3390/app112411859

    Article  CAS  Google Scholar 

  100. Ikeoka, R.A., Appoloni, C.R., Scorzelli, R.B., Santos, E., Rizzutto, M.D.A., and Bandeira, A.M., Minerals, 2022, vol. 12, no. 10, p. 1302. https://doi.org/10.3390/min12101302

    Article  CAS  Google Scholar 

  101. Amadori, M.L., Del Vais, C., Fermo, P., and Pallante, P., Environ. Sci. Pollut. Res., 2017, vol. 24, no. 16, p. 13921. https://doi.org/10.1007/s11356-016-7065-7

    Article  CAS  Google Scholar 

  102. Barone, G., Mazzoleni, P., Ingoglia, C., and Vanaria, M.G., J. Archaeol. Sci., 2011, vol. 38, no. 11, p. 3060. https://doi.org/10.1016/j.jas.2011.07.005

    Article  Google Scholar 

  103. Barone, G., Lo, GiudiceA., Mazzoleni, P., Pezzino, A., Barilaro, D., Crupi, V., and Triscari, M., Archaeometry, 2005, vol. 47, no. 4, p. 745. https://doi.org/10.1111/j.1475-4754.2005.00230.x

    Article  CAS  Google Scholar 

  104. Horcajada, P., Roldán, C., Vidal, C., Rodenas, I., Carballo, J., Murcia, S., and Juanes, D., Radiat. Phys. Chem., 2014, vol. 97, p. 275. https://doi.org/10.1016/j.radphyschem.2013.12.016

    Article  CAS  Google Scholar 

  105. Odelli, E., Palleschi, V., Legnaioli, S., Cantini, F., and Raneri, S., Spectrochim. Acta, Part B, 2020, vol. 172, 105966. https://doi.org/10.1016/j.sab.2020.105966

    Article  CAS  Google Scholar 

  106. López-García, P., Argote-Espino, D., Fačevicová, K., J. Archaeol. Sci. Rep., 2018, vol. 19, p. 100. https://doi.org/10.1016/j.jasrep.2018.02.023

    Article  Google Scholar 

  107. Barone, G., Mazzoleni, P., Spagnolo, G.V., and Raneri, S., J. Cult. Heritage, 2019, vol. 38, p. 147. https://doi.org/10.1016/j.culher.2019.02.004

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to D.L. Shergin for providing ceramics from the Baikal Siberia sites.

Funding

The study was supported by the Russian Science Foundation, grant no. 19-78-10084 (https://rscf.ru/project/19-78-10084/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Chubarov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chubarov, V.M., Pashkova, G.V., Maltsev, A.S. et al. Possibilities and Limitations of Various X-ray Fluorescence Techniques in Studying the Chemical Composition of Ancient Ceramics. J Anal Chem 79, 262–272 (2024). https://doi.org/10.1134/S1061934824030067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934824030067

Keywords:

Navigation