Skip to main content
Log in

Molecular Dynamics of Decane Solubilization and Diffusion of Aggregates Consisting of Surfactant and Decane Molecules in Aqueous Solutions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

All-atom molecular dynamics has been employed to study the processes of self-aggregation and solubilization in aqueous solutions that contain decane, ionic and nonionic surfactants, and additives of salts. In particular, micellization of an anionic surfactant (sodium dodecyl sulfate) in an aqueous solution has been simulated in the presence of a hydrocarbon (decane) at preset temperature and pressure and different initial surfactant and hydrocarbon concentrations in the solution. Moreover, self-aggregation has been simulated in systems containing water, decane, and a mixture of anionic (sodium dodecyl sulfate) and nonionic (hexaethylene glycol monodecyl ether, C10E6) both in a salt-free solution and in the presence of sodium chloride, calcium chloride, or a mixture thereof. Diffusion coefficients have been calculated for aggregates consisting of hydrocarbon and surfactant aggregates, and the viscosities of corresponding aqueous solutions have been estimated. The viscosities have been calculated in simulation cells containing either one or several aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Rusanov, A.I. and Shchekin, A.K., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Lan’, 2016, 2nd ed.

  2. Shchekin, A.K., Adzhemyan, L.Ts., Babintsev, I.A., and Volkov, N.A., Colloid J., 2018, vol. 80, p. 107.

    Article  CAS  Google Scholar 

  3. Self-Assembly: From Surfactants to Nanoparticles, Nagarajan, R., Ed., Hoboken: Wiley, 2019.

    Google Scholar 

  4. Rusanov, A.I., Colloid J., 2021, vol. 83, p. 127.

    Article  CAS  Google Scholar 

  5. Shchekin, A.K., Volkov, N.A, Koltsov, I.N., Tretyakov, N.Yu., Volkova, S.S., and Turnaeva, E.A., Colloid J., 2021, vol. 83, p. 518.

  6. Rusanov, A.I., Shchekin, A.K., and Volkov, N.A., Russ. Chem. Rev., 2017, vol. 86, p. 567.

    Article  CAS  Google Scholar 

  7. Shelley, J.C. and Shelley, M.Y., Curr. Opin. Colloid Interface Sci., 2000, vol. 5, p. 101.

    Article  CAS  Google Scholar 

  8. Brodskaya, E.N., Colloid J., 2012, vol. 74, p. 154.

    Article  CAS  Google Scholar 

  9. Ladanyi, B.M., Curr. Opin. Colloid Interface Sci., 2013, vol. 18, p. 15.

    Article  CAS  Google Scholar 

  10. Bruce, C.D., Berkowitz, M.L., Perera, L., and Forbes, M.D.E., J. Phys. Chem. B, 2002, vol. 106, p. 3788.

    Article  CAS  Google Scholar 

  11. Jardat, M., Durand-Vidal, S., Da, Mota, N., and Turq, P., J. Chem. Phys., 2004, vol. 120, p. 6268.

    Article  CAS  PubMed  Google Scholar 

  12. Volkov, N.A., Divinskiy, B.B., Vorontsov-Velyaminov, P.N., and Shchekin, A.K., Colloids Surf. A, 2015, vol. 480, p. 165.

    Article  CAS  Google Scholar 

  13. Volkov, N.A., Tuzov, N.V., and Shchekin, A.K., Fluid Phase Equilib., 2016, vol. 424, p. 114.

    Article  CAS  Google Scholar 

  14. Volkov, N.A., Posysoev, M.V., and Shchekin, A.K., Colloid J., 2018, vol. 80, p. 248.

    Article  CAS  Google Scholar 

  15. Braun, R., Engelman, D.M., and Schulten, K., Biophys. J., 2004, vol. 87, p. 754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuan, F., Wang, S., and Larson, R.G., Langmuir, 2015, vol. 31, p. 1336.

    Article  CAS  PubMed  Google Scholar 

  17. Kuhn, H. and Rehage, H., Prog. Colloid Polym. Sci., 1998, vol. 111, p. 158.

    Article  CAS  Google Scholar 

  18. Bruce, C.D., Senapati, S., Berkowitz, M.L., Perera, L., and Forbes, M.D.E., J. Phys. Chem. B, 2002, vol. 106, p. 10902.

    Article  CAS  Google Scholar 

  19. Dastidar, S.G. and Mukhopadhyay, C., Phys. Rev. E, 2004, vol. 70, 061901.

    Article  CAS  Google Scholar 

  20. Dahirel, V., Ancian, B., Jardat, M., Meriguet, G., Turq, P., and Lequin, O., Soft Matter, 2010, vol. 6, p. 517.

    Article  CAS  Google Scholar 

  21. Marrink, S.J., Tieleman, D.P., and Mark, A.E., J. Phys. Chem. B, 2000, vol. 104, p. 12165.

    Article  CAS  Google Scholar 

  22. Mohan, G. and Kopelevich, D.I., J. Chem. Phys., 2008, vol. 128, 044905.

    Article  PubMed  CAS  Google Scholar 

  23. Aoun, B., Sharma, V.K., Pellegrini, E., Mitra, S., Johnson, M., and Mukhopadhyay, R., J. Phys. Chem. B, vol. 119, p. 5079.

  24. Volkov, N.A., Shchekin, A.K., Tuzov, N.V., Lebedeva, T.S., and Kazantseva, M.A., J. Mol. Liq., 2017, vol. 236, p. 414.

    Article  CAS  Google Scholar 

  25. GROMACS Development Team. GROMACS Documentation. Release 2020.1. https://doi.org/10.5281/zenodo.3685920.

  26. Berendsen, H.J.C., van der Spoel, D., and van Drunen, R., Comput. Phys. Commun., 1995, vol. 91, p. 43.

    Article  CAS  Google Scholar 

  27. Lindahl, E., Hess, B., and van der Spoel, D., J. Mol. Model., 2001, vol. 7, p. 306.

    Article  CAS  Google Scholar 

  28. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J.C., J. Comput. Chem., 2005, vol. 26, p. 1701.

    Article  CAS  PubMed  Google Scholar 

  29. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E., J. Chem. Theory Comput., 2008, vol. 4, p. 435.

    Article  CAS  PubMed  Google Scholar 

  30. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., and Lindahl, E., Bioinformatics, 2013, vol. 29, p. 845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pall, S., Abraham, M.J., Kutzner, C., Hess, B., and Lindahl, E., Solving Software Challenges for Exascale, Markidis, S. and Laure, E., Eds., 2015, vol. 8759, p. 3.

    Google Scholar 

  32. Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., and Lindahl, E., SoftwareX, 2015, vol. 1, p. 19.

    Article  Google Scholar 

  33. Martínez, L., Andrade, R., Birgin, E.G., and Martínez, J.M., J. Comput. Chem., 2009, vol. 30, p. 2157.

    Article  PubMed  CAS  Google Scholar 

  34. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T.A., Lee, H., and Pedersen, L., J. Chem. Phys., 1995, vol. 103, p. 8577.

    Article  CAS  Google Scholar 

  35. Bussi, G., Donadio, D., and Parrinello, M., J. Chem. Phys., 2007, vol. 126, p. 014101.

    Article  PubMed  CAS  Google Scholar 

  36. Parrinello, M. and Rahman, A., J. Appl. Phys., 1981, vol. 52, p. 7182.

    Article  CAS  Google Scholar 

  37. Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., and Mackerell, A.D., Jr., J. Comput. Chem., 2010, vol. 31, p. 671.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu, W., He, X., Vanommeslaeghe, K., and Mackerell, A.D., Jr., J. Comput. Chem., 2012, vol. 33, p. 2451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L., J. Chem. Phys., 1983, vol. 79, p. 926.

    Article  CAS  Google Scholar 

  40. Humphrey, W., Dalke, A., and Schulten, K., J. Mol. Graph., 1996, vol. 14, p. 33.

    Article  CAS  PubMed  Google Scholar 

  41. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., and Hutchison, G.R., J. Cheminform, 2012, vol. 4, p. 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shchekin, A.K., Koga, K., and Volkov, N.A., J. Chem. Phys., 2019, vol. 151, p. 244903.

    Article  CAS  Google Scholar 

  43. Bogusz, S., Venable, R.M., and Pastor, R.W., J. Phys. Chem. B, 2000, vol. 104, p. 5462.

    Article  CAS  Google Scholar 

  44. Kondratyuk, N.D. and Orekhov, M.A., J. Phys. Conf. Ser., 2020, vol. 1556, p. 012048.

    Article  CAS  Google Scholar 

  45. Dünweg, B. and Kremer, K., J. Chem. Phys., 1993, vol. 99, p. 6983.

    Article  Google Scholar 

  46. Yeh, I.C. and Hummer, G.J., J. Phys. Chem. B, 2004, vol. 108, p. 15873.

    Article  CAS  Google Scholar 

  47. Singh, S.P., Huang, C.-C., Westphal, E., Gompper, G., and Winkler, R.G., J. Chem. Phys., 2014, vol. 141, p. 084901.

    Google Scholar 

Download references

Funding

This work was supported by the PJSC “GAZPROMNEFT.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Volkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, N.A., Eroshkin, Y.A., Shchekin, A.K. et al. Molecular Dynamics of Decane Solubilization and Diffusion of Aggregates Consisting of Surfactant and Decane Molecules in Aqueous Solutions. Colloid J 83, 406–417 (2021). https://doi.org/10.1134/S1061933X21040141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X21040141

Navigation