Skip to main content
Log in

Continuous Flow Synthesis of Iron Oxide Nanoparticles Using Water-in-Oil Microemulsion

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A continuous laminar flow reactor for the synthesis of nanopowder in microemulsion is described. The reactor is suitable for separated handling with nucleation, growth, and stabilization processes. The synthesis of iron oxide nanoparticles was selected as a model case. A water−sodium dodecyl sulphate−cyclohexene system was used as the microemulsion system for dissolving reactive aqueous solution, precursor, and a particle stabilizer. The product was purified and transferred to the aqueous phase. The result was a colloid solution of iron oxide nanoparticles in water of 50–200 nm in size with a zeta potential ranging from –25 to –57 mV. The product was characterized by UV-VIS spectroscopy, powder XRD, dynamic light scattering, electron microscopy, and electron diffraction. The results showed that water-in-oil microemulsion method is useful for the synthesis of nanopowders to obtain large amounts of stable product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Nourafkan, E., Asachi, M., Gao, H., Raza, G., and Wen, D., J. Ind. Eng. Chem., 2017, vol. 50, p. 57.

    Article  CAS  Google Scholar 

  2. Jun, Y., Huh, Y.-M., Choi, J., Lee, J.-H., Song, H.-T., Kim, S., Yoon, S., Kim, K.-S., Shin, J.-S., Suh, J.-S., and Cheon, J., J. Am. Chem. Soc., 2005, vol. 127, p. 5732.

    Article  CAS  Google Scholar 

  3. Thomas, G., Demoisson, F., Chassagnon, R., Po-pova, E., and Millot, N., Nanotechnology, 2016, vol. 27, p. 135 604.

    Article  Google Scholar 

  4. Elbasuney, S. and Mostafa, S.F., Powder Technol., 2015, vol. 278, p. 72.

    Article  CAS  Google Scholar 

  5. Jung, Y.J., Park, S.H., Song, K.H., and Choe, J., Powder Technol., 2012, vol. 217, p. 325.

    Article  CAS  Google Scholar 

  6. Bal, V. and Bandyopadhyaya, R., Chem. Eng. J., 2019, vol. 371, p. 43.

    Article  CAS  Google Scholar 

  7. Corradi, A.B., Bondioli, F., Ferrari, A.M., Focher, B., and Leonelli, C., Powder Technol., 2006, vol. 167, p. 45.

    Article  CAS  Google Scholar 

  8. Tovstun, S.A. and Razumov, V.F., Russ. Chem. Rev., 2011, vol. 80, p. 953.

    Article  CAS  Google Scholar 

  9. Moulik, S.P. and Paul, B.K., Adv. Colloid Interface Sci., 1998, vol. 78, p. 99.

    Article  CAS  Google Scholar 

  10. Razumov, V.F. and Tovstun, S.A., Colloid J., 2019, vol. 81, p. 337.

    Article  CAS  Google Scholar 

  11. Ghosh, S., Ghatak, C., Banerjee, C., Mandal, S., Kuchlyan, J., and Sarkar, N., Langmuir, 2013, vol. 29, p. 10 066.

    Article  Google Scholar 

  12. Darab, J.G., Pfund, D.M., Fulton, J.L., Linehan, J.C., Capel, M., and Ma, Y., Langmuir, 1994, vol. 10, p. 135.

    Article  CAS  Google Scholar 

  13. Drmota, A., Drofenik, M., Koselj, J., and Znidarsic, A., in Microemulsions—An Introduction to Properties and Applications, Najjar R., Ed., InTech, 2012. https://doi.org/10.5772/36154.

  14. Makovec, D., Košak, A., Žnidaršič, A., and Drofenik, M., J. Magn. Magn. Mater., 2005, vol. 289, p. 32.

    Article  CAS  Google Scholar 

  15. Perez-Coronado, A.M., Calvo, L., Alonso-Mora-les, N., Heras, F., Rodriguez, J.J., and Gilarranz, M.A., Colloids Surf. A, 2016, vol. 497, p. 28.

    Article  CAS  Google Scholar 

  16. Aubery, C., Solans, C., and Sanchez-Dominguez, M., Langmuir, 2011, vol. 27, p. 14 005.

    Article  Google Scholar 

  17. Uskoković, V. and Drofenik, M., Colloids Surf. A, 2005, vol. 266, p. 168.

  18. Abazari, R., Heshmatpour, F., and Balalaie, S., ACS Catal., 2013, vol. 3, p. 139.

    Article  CAS  Google Scholar 

  19. Dar, M., Shah, J., Siddiqui, W.A., and Kotnala, R.K., Appl. Nanosci., 2014, vol. 4, p. 675.

    Article  Google Scholar 

  20. Demoisson, F., Ariane, M., Piolet, R., and Bernard, F., Adv. Eng. Mater., 2011, vol. 13, p. 487.

    Article  CAS  Google Scholar 

  21. Ahmadi, R., Malek, M., Hosseini, H.R.M., Shokrgozar, M.A., Oghabian, M.A., Masoudi, A., Gu, N., and Zhang, Y., Mater. Chem. Phys., 2011, vol. 131, p. 170.

    Article  CAS  Google Scholar 

  22. Liao, N., Wu, M., Pan, F., Lin, J., Li, Z., Zhang, D., Wang, Y., Zheng, Y., Peng, J., Liu, X., and Liu, J., Sci. Rep., 2016, vol. 6, p. 18 746.

    Article  Google Scholar 

  23. Boyer, C., Whittaker, M.R., Bulmus, V., Liu, J., and Davis, T.P., NPG Asia Mater., 2010, vol. 2, p. 23.

    Article  Google Scholar 

  24. Hill, C.G. and Root, T.W., Introduction to Chemical Engineering Kinetics and Reactor Design, New York: Wiley, 2014.

    Google Scholar 

  25. Barrow, M., Taylor, A., Fuentes-Caparros, A.M., Sharkey, J., Daniels, L.M., Mandal, P., Park, B.K., Murray, P., Rosseinsky, M.J., and Adams, D.J., Biomater. Sci., 2018, vol. 6, p. 101.

    Article  CAS  Google Scholar 

  26. Gupta, A.K. and Gupta, M., Biomaterials, 2005, vol. 26, p. 3995.

    Article  CAS  Google Scholar 

  27. Singh, N., Jenkins, G.J.S., Asadi, R., and Doak, S.H., Nano Rev., 2010, vol. 1, p. 5358.

    Article  Google Scholar 

  28. Cavasino, F.P., Sbriziolo, C., and Liveri, M.L.T., J. Chem. Soc., Faraday Trans., 1998, vol. 94, p. 395.

    Article  Google Scholar 

  29. Gobe, M., Kon-No, K., Kandori, K., and Kitahara, A., J. Colloid Interface Sci., 1983, vol. 93, p. 293.

    Article  CAS  Google Scholar 

  30. Sinha, M.K., Sahu, S.K., Meshram, P., Prasad, L.B., and Pandey, B.D., Powder Technol., 2015, vol. 276, p. 214.

    Article  CAS  Google Scholar 

  31. Inouye, K., Endo, R., Otsuka, Y., Miyashiro, K., Kaneko, K., and Ishikawa, T., J. Phys. Chem., 1982, vol. 86, p. 1465.

    Article  CAS  Google Scholar 

  32. Patterson, A.L., Phys. Rev., 1939, vol. 56, p. 978.

    Article  CAS  Google Scholar 

  33. Wu, M., Zhang, D., Zeng, Y., Wu, L., Liu, X., and Liu, J., Nanotechnology, 2015, vol. 26, p. 115 102.

    Article  Google Scholar 

Download references

Funding

Financial support of the Grant Academy of Czech Republic of project “Advanced Experimental and Theoretical Approaches to Size-Dependent Phase Diagrams of Nanoalloys” (GA17-15405S) is gratefully acknowledged. This research has also been financially supported by the MEYS CR under the project CEITEC 2020 (LQ1601) and the Horizon 2020 Research and Innovation Program under the grant agreement no. 810 626 (SINNCE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sopoušek.

Ethics declarations

The authors declare that they have no conflict of inte-rest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sopoušek, J., Pinkas, J., Buršík, J. et al. Continuous Flow Synthesis of Iron Oxide Nanoparticles Using Water-in-Oil Microemulsion. Colloid J 82, 727–734 (2020). https://doi.org/10.1134/S1061933X20060174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20060174

Navigation