Skip to main content
Log in

The effect of the mechanical activation dose on the defective structure of artificial graphite

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Energy parameters (dose D and the work of surface formation) have been determined for the formation of a defective structure as a result of mechanical activation of graphite. Graphite activation has been shown to be a two-stage process: at low doses (D ≤ 20 kJ/g), the disruption and shift of graphite particles are the main processes, which are accompanied by a reduction in particle size, formation of meso- and micropores, and a rise in the BET specific surface area to 450–550 m2/g predominantly due to the development of a slitlike mesoporosity. At the same time, the crystalline structure of graphite is transformed into a turbostrate one with a concomitant increase in the lattice parameter and a decrease in the sizes of coherentscattering regions. The shape of diffraction lines can be described under the assumption that several fractions with greatly different degrees of defectiveness coexist in graphite. At higher doses, turbostrate graphite is transformed into X-ray amorphous carbon with a concomitant decrease in the specific surface area and meso- and microporosity. The defects resulting from the mechanical activation cannot be completely annealed at 2800°C. The main parameter of mechanical activation is the dose of supplied energy D = J g t (J g is the specific power consumption, and t is the duration of the activation). The curves describing accumulation of different defects can be represented in the form of a unified dependence on the dose for the J g and, accordingly, t values varied by more than an order of magnitude (J g = 1.7–22 W/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Heinike, G., Tribochemistry, Berlin: Akademie, 1984.

    Google Scholar 

  2. Salver-Disma, F., Lenain, C., Beaudoin, B., Aymard, L., and Tarascon, J.-M., Solid State Ionics, 1997, vol. 98, p. 145.

    Article  CAS  Google Scholar 

  3. Simon, P. and Gogotsi, Y., Nat. Mater., 2008, vol. 7, p. 845.

    Article  CAS  Google Scholar 

  4. Huang, Z.G., Guo, Z.P., Calka, A., Wexler, D., and Liu, H.K., J. Alloys Compd., 2007, vol. 427, p. 94.

    Article  CAS  Google Scholar 

  5. Nedorezova, P.M., Tsvetkova, V.I., Kolbanev, I.V., and D’yachkovskii, F.S., Vysokomol. Soedin., Ser. A, 1989, vol. 31, p. 2657.

    CAS  Google Scholar 

  6. Rodriguez-Reinozo, F., Carbon, 1998, vol. 36, p. 159.

    Article  Google Scholar 

  7. Streletskii, A.N., Kolbanev, I.V., Borunova, A.B., Leonov, A.V., and Butyagin, P.Yu., Colloid J., 2004, vol. 66, p. 729.

    Article  CAS  Google Scholar 

  8. Portnoi, V.K., Leonov, A.V., Streletskii, A.N., and Logachev, A.V., Inorg. Mater., 2013, vol. 49, p. 266.

    Article  CAS  Google Scholar 

  9. Timoshchuk, E.V., Samoilov, V.M., Timoshchuk, E.I., and Smirnov, V.K., Solid Fuel Chem., 2011, vol. 45, p. 57.

    Article  CAS  Google Scholar 

  10. Fetisova, O.Yu., Cand. Sci. (Chem.) Dissertation, Krasnoyarsk: Inst. of Chemistry and Chemical Technology, Sib. Branch, RAS, 2012.

    Google Scholar 

  11. Lobarev, A.V., Sister, V.G., Vishnevskaya, I.A., Ivannikova, E.M., and Kolbanev, I.V., Patent RF 23315779.

  12. Li, J.L., Peng, Q.S., Bai, G.Z., and Jiang, W., Carbon, 2005, vol. 43, p. 2830.

    Article  CAS  Google Scholar 

  13. Kostecki, M., Olszyna, A.R., and Sokolowska, A., Mater. Sci.-Poland, 2013, vol. 31, p. 165.

    Article  CAS  Google Scholar 

  14. Liu, L., Xiong, Z., Hu, D., Wu, G., and Chen, P., Chem. Commun., 2013, vol. 49, p. 7890.

    Article  CAS  Google Scholar 

  15. Chen, Y., Gerald, J.F., Chadderton, L.T., and Chaffron, L., Appl. Phys. Lett., 1999, vol. 74, p. 2782.

    Article  CAS  Google Scholar 

  16. Chen, X.H., Yang, H.S., Wu, G.T., Wang, M., Deng, F.M., Zhang, X.B., Peng, J.C., and Li, W.Z., J. Cryst. Growth, 2000, vol. 218, p. 57.

    Article  CAS  Google Scholar 

  17. Hermann, H., Schubert, Th., Gruner, W., and Mattern, N., Nanostruct. Mater., 1997, vol. 8, p. 215.

    Article  CAS  Google Scholar 

  18. Salver-Disma, F., Taraskon, J.-M., Clinard, C., and Rouzaud, J.-N., Carbon, 1999, vol. 37, p. 1941.

    Article  CAS  Google Scholar 

  19. Welham, N.J., Berbenni, V., and Chapman, P.G., J. Alloys Compd., 2003, vol. 349, p. 255.

    Article  CAS  Google Scholar 

  20. Touzik, A., Hentsche, M., Wenzel, R., and Hermann, H., J. Alloys Compd., 2006, vol. 421, p. 141.

    Article  CAS  Google Scholar 

  21. Milev, A., Wilson, M., Kannangara, G.S.K., and Tran, N., Mater. Chem. Phys., 2008, vol. 111, p. 346.

    Article  CAS  Google Scholar 

  22. Butyagin, P.Yu., Kuznetsov, A.R., and Pavlychev, I.K., Prib. Tekh. Eksp., 1986, no. 6, p. 201.

    Google Scholar 

  23. Butyagin, P.Yu. and Pavlichev, I.K., React. Solid, 1986, vol. 1, p. 361.

    Article  CAS  Google Scholar 

  24. Streletskii, A.N., Proc.2nd Int. Conf. on Mechanical Alloying, Vancouver, 1993, p. 51.

  25. Borunova, A.B., Zhernovenkova, Yu.V., Streletskii, A.N., and Portnoi, V.K., in Obrabotka dispersnykh materialov i sred (Treatment of Disperse Materials and Media), Odessa: NPO “VOTUM”, 1999, no. 9, p. 158.

    Google Scholar 

  26. Barrett, E.P., Joyner, L.G., and Hallenda, P.H., J. Am. Chem. Soc., 1951, vol. 73, p. 273.

    Article  Google Scholar 

  27. Shelekhov, E.V., Abstracts of Papers, Nats. konf. po primeneniyu rentgenovskogo, sinkhrotronnogo izluchenii, neitronov i elektronov dlya issledovaniya materialov (Natl. Conf. on Using X-ray, Synchrotron Radiations, Neutrons and Electrons for Materials Investigation), Dubna: OIYaI, 1997, vol. 3, p. 316.

    Google Scholar 

  28. Gregg, S. and Sing, K., Adsorption, Surface Area and Porosity, New York: Academic, 1982.

    Google Scholar 

  29. Tanaka, T., Nasu, S., Nakagawa, K., Ishihara, K.N., and Shingu, P.H., Mater. Sci. Forum, 1992, vol. 88, p. 269.

    Article  Google Scholar 

  30. Tsybulya, S.V. and Cherepanova, S.I., Vvedenie v strukturnyi analiz nanokristallov. Uchebnoe posobie (Introduction to Structural Analysis of Nanocrystals: A Manual), Novosibirsk: Novosibirsk. Gos. Univ., 2008.

    Google Scholar 

  31. Samoilov, V.M. and Streletskii, A.N., Khim. Tverd. Topl., 2004, no. 2, p. 53.

    Google Scholar 

  32. Ostrovskii, V.S., Virgil’ev, Yu.S., Kostikov, V.I., and Shipkov, N.N., Iskusstvennyi grafit (Artificial Graphite), Moscow: Metallurgiya, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Borunova.

Additional information

Original Russian Text © A.B. Borunova, A.N. Streletskii, D.G. Permenov, A.V. Leonov, 2015, published in Kolloidnyi Zhurnal, 2015, Vol. 77, No. 2, pp. 134–143.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borunova, A.B., Streletskii, A.N., Permenov, D.G. et al. The effect of the mechanical activation dose on the defective structure of artificial graphite. Colloid J 77, 125–134 (2015). https://doi.org/10.1134/S1061933X15020039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X15020039

Keywords

Navigation