Skip to main content
Log in

A body traps as many water-wave modes in a symmetric channel as it wishes

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

It is proved that, under a certain geometrical assumption in the linear water-wave problem, a body approaching the water surface of a symmetric three-dimensional channel gets any number of trapped modes with frequencies in the interval (0, δ) of the continuous spectrum; here δ can be any given positive number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Stoker, Water Waves. The Mathematical Theory with Applications. Reprint of the 1957 original. (John Wiley & Sons, Inc., New York, 1992).

    MATH  Google Scholar 

  2. R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves (Cambridge University Press, Cambridge, 1997).

    Book  MATH  Google Scholar 

  3. N. Kuznetsov, V. Maz’ya, and B. Vainberg, Linear Water Waves. A Mathematical Approach (Cambridge University Press, Cambridge, 2002).

    Book  MATH  Google Scholar 

  4. S. Campbell, The Loch Ness Monster: The Evidence (Birlinn Ltd., Edinburgh, 2002).

    Google Scholar 

  5. F. John, “On the Motion of Floating Bodies. II,” Comm. Pure Appl. Math. 3, 45–101 (1950).

    Article  MathSciNet  Google Scholar 

  6. F. Ursell, “Trapping Modes in the Theory of Surface Waves,” Proc. Camb. Philos. Soc. 47, 347–358 (1951).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. C. M. Linton and P. McIver, “Embedded Trapped Modes in Water Waves and Acoustics,” Wave Motion 45(1–2), 16–29 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Ursell, “Edge Waves on a Sloping Beach,” Proc. R. Soc. Lond., Ser. A 214, 79–97 (1952).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. P. McIver and D. V. Evans, “Edge Waves over a Shelf: Full Linear Theory,” J. Fluid Mech. 142, 79–95 (1984).

    Article  ADS  MATH  Google Scholar 

  10. M. D. Groves, “On the Existence of Trapped Modes in Channels of Arbitrary Cross-Section,” Math. Methods Appl. Sci. 20, 521–545 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. S. A. Nazarov, “Sufficient Conditions on the Existence of Trapped Modes in Problems of the Linear Theory of Surface Waves,” Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 369 (POMI, St. Petersburg, 2009), pp. 202–223 [J. Math. Sci. 167 (5), 713–725 (2010)].

    Google Scholar 

  12. S. A. Nazarov, “Concentration of the Trapped Modes in Problems of the Linearized Theory of Water-Waves,” Mat. Sb. 199(12), 53–78 (2008) [Sb. Math. 199 (11–12), 1783–1807 (2008)].

    Google Scholar 

  13. G. Cardone, T. Durante, and S. A. Nazarov, “Water-Waves Modes Trapped in a Canal by a Near-Surface Rough Body,” Z. Angew. Math. Mech. 90(12), 983–1004 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates (Nauchnaya Kniga, Novosibirsk, 2001).

    Google Scholar 

  15. S. A. Nazarov and J. Taskinen, “On Essential and Continuous Spectra of the Linearized Water-Wave Problem in a Finite Pond,” Math. Scand. 106, 141–160 (2010).

    MathSciNet  MATH  Google Scholar 

  16. D. V. Evans, M. Levitin, and D. Vasil’ev, “Existence Theorems for Trapped Modes,” J. Fluid Mech. 261, 21–31 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Springer-Verlag, New York-Berlin, 1985).

    MATH  Google Scholar 

  18. M. Sh. Birman and M. Z. Solomjak [Solomyak], Spectral Theory of Self-Adjoint Operators in Hilbert Space (D. Reidel Publishing Co., Dordrecht, 1987).

    MATH  Google Scholar 

  19. S. A. Nazarov and B. A. Plamenevskii, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter & Co., Berlin, 1994).

    Book  MATH  Google Scholar 

  20. V. G. Mazja and B. A. Plamenevskii, “Estimates in L p and in Hölder Classes and the Miranda-Agmon Maximum Principle for Solutions of Elliptic Boundary Value Problems in Domains with Singular Points on the Boundary,” Amer. Math. Soc. Transl. Ser. 2 123 (American Mathematical Society, Providence, RI, 1984), pp. 1–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A. A body traps as many water-wave modes in a symmetric channel as it wishes. Russ. J. Math. Phys. 18, 183–194 (2011). https://doi.org/10.1134/S1061920811020075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920811020075

Keywords

Navigation