Skip to main content
Log in

Quantitative morphological evaluation of laser ablation on calculus using full-field optical coherence microscopy

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

The quantitative morphological evaluation at high resolution is of significance for the study of laser-tissue interaction. In this paper, a full-field optical coherence microscopy (OCM) system with high resolution of ∼2 μm was developed to investigate the ablation on urinary calculus by a free-running Er:YAG laser. We studied the morphological variation quantitatively corresponding to change of energy setting of the Er:YAG laser. The experimental results show that the full-field OCM enables quantitative evaluation of the morphological shape of craters and material removal, and particularly the fine structure. We also built a heat conduction model to simulate the process of laser-calculus interaction by using finite element method. Through the simulation, the removal region of the calculus was calculated according to the temperature distribution. As a result, the depth, width, volume, and the cross-sectional profile of the crater in calculus measured by full-field OCM matched well with the theoretical results based on the heat conduction model. Both experimental and theoretical results confirm that the thermal interaction is the dominant effect in the ablation of calculus by Er:YAG laser, demonstrating the effectiveness of full-field OCM in studying laser-tissue interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Springer, Berlin, Heidelberg, 2004).

    Google Scholar 

  2. A. Vogel and V. Venugopalan, Chem. Rev. 103, 577 (2003).

    Article  Google Scholar 

  3. S. R. Visuri, J. T. Walsh, and H. A. Wigdor, Lasers Surg. Med. 18, 294 (1996).

    Article  Google Scholar 

  4. H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, Lasers Surg. Med. 38, 39 (2006).

    Article  Google Scholar 

  5. H. Ullah, M. Atif, S. Firdous, M. S. Mehmood, M. Ikram, C. Kurachi, C. Grecco, G. Nicolodelli, and V. S. Bagnato, Laser Phys. Lett. 7, 889 (2010).

    Article  Google Scholar 

  6. M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, IEEE J. Quantum Elect. 32, 2025 (1996).

    Article  ADS  Google Scholar 

  7. K. F. Chan, T. J. Pfefer, J. M. H. Teichman, and A. J. Welch, J. Endourol. 15, 257 (2001).

    Article  Google Scholar 

  8. T. Lü, Q. Xiao, D. Xia, K. Ruan, and Z. Li, J. Biomed. Opt. 15, 048002 (2010).

    Article  Google Scholar 

  9. M. Frenz, F. K nz, H. Pratisto, and H. P. Weber, J. Appl. Phys. 84, 5905 (1998).

    Article  ADS  Google Scholar 

  10. A. Z. Freitas, L. R. Freschi, R. E. Samad, D. M. Zezell, S. C. Gouw-Soares, and N. D. Vieira, Jr., Laser Phys. Lett. 7, 236 (2010).

    Article  ADS  Google Scholar 

  11. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 63, 109 (1996).

    Article  ADS  Google Scholar 

  12. A. Patzelt, W. Sterry, and J. Lademann, Laser Phys. Lett. 7, 843 (2010).

    Article  Google Scholar 

  13. V. Czaika, A. Alborova, W. Sterry, J. Lademann, and S. Koch, Laser Phys. Lett. 7, 685 (2010).

    Article  ADS  Google Scholar 

  14. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).

    Article  ADS  Google Scholar 

  15. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, J. Biomed. Opt. 12, 051403 (2007).

    Article  ADS  Google Scholar 

  16. Z. Wang, Z. Yuan, H. Wang, and Y. Pan, Opt. Express 14, 7014 (2006).

    Article  ADS  Google Scholar 

  17. L. Huo, J. Xi, Y. Wu, and X. Li, Opt. Express 18, 14375 (2010).

    Article  ADS  Google Scholar 

  18. D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, Laser Phys. Lett. 6, 753 (2009).

    Article  ADS  Google Scholar 

  19. K. V. Larin, I. V. Larina, M. Liebling, and M. E. Dickinson, J. Innov. Opt. Health Sci. 2, 253 (2009).

    Article  Google Scholar 

  20. M. Chen, Z. Ding, L. Wang, T. Wu, and Y. Tao, J. Innov. Opt. Health Sci. 3, 1 (2010).

    Article  Google Scholar 

  21. R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, Laser Phys. Lett. 8, 164 (2011).

    Article  ADS  Google Scholar 

  22. H. Q. Zhong, Z. Y. Guo, H. J. Wei, J. L. Si, L. Guo, Q. L. Zhao, C. C. Zeng, H. L. Xiong, Y. H. He, and S. H. Liu, Laser Phys. Lett. 7, 315 (2010).

    Article  ADS  Google Scholar 

  23. Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, Laser Phys. Lett. 8, 71 (2011).

    Article  ADS  Google Scholar 

  24. I. V. Meglinski, C. Buranachai, and L. A. Terry, Laser Phys. Lett. 7, 307 (2010).

    Article  ADS  Google Scholar 

  25. M. Bonesi, S. Matcher, and I. Meglinski, Laser Phys. 20, 1491 (2010).

    Article  ADS  Google Scholar 

  26. M. G. Ghosn, S. H. Syed, N. A. Befrui, M. Leba, A. Vijayananda, N. Sudheendran, and K. V. Larin, Laser Phys. 19, 1272 (2009).

    Article  ADS  Google Scholar 

  27. M. Bonesi, S. G. Proskurin, and I. V. Meglinski, Laser Phys. 20, 891 (2010).

    Article  ADS  Google Scholar 

  28. X. Guo, Z. Y. Guo, H. J. Wei, H. Q. Yang, Y. H. He, S. S. Xie, G. Y. Wu, H. Q. Zhong, L. Q. Li, and Q. L. Zhao, Laser Phys. 20, 1849 (2010).

    Article  ADS  Google Scholar 

  29. A. Z. Freitas, D. M. Zezell, M. P. A. Mayer, A. C. Ribeiro, A. S. L. Gomes, and N. D. Vieira, Jr., Laser Phys. Lett. 6, 896 (2009).

    Article  Google Scholar 

  30. H. Lee, R. T. Ryan, J. Kim, B. Choi, N. V. Arakeri, J.M. H. Teichman, and A. J. Welch, J. Biomech. Eng. 26, 506 (2004).

    Article  Google Scholar 

  31. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, Opt. Lett. 23, 244 (1998).

    Article  ADS  Google Scholar 

  32. B. Laude, A. D. Martino, B. Drévillon, L. Benattar, and L. Schwartz, Appl. Opt. 41, 6637 (2002).

    Article  ADS  Google Scholar 

  33. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, Phys. Med. Biol. 49, 1227 (2004).

    Article  Google Scholar 

  34. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, Opt. Express 14, 726 (2006).

    Article  ADS  Google Scholar 

  35. C. Zhou, Y. Wang, A. D. Aguirre, T. H. Tsai, D. W. Co- hen, J. L. Connolly, and J. G. Fujimoto, J. Biomed. Opt. 15, 016001 (2010).

    Article  ADS  Google Scholar 

  36. C. óMahony, M. Hill, M. Brunei, R. Duane, and A. Mathewson, Meas. Sci. Technol. 14, 1807 (2003).

    Article  ADS  Google Scholar 

  37. D. Stifter, Appl. Phys. B 88, 337 (2007).

    Article  Google Scholar 

  38. K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, Lasers Surg. Med. 25, 22 (1999).

    Google Scholar 

  39. A. J. Welch, IEEE J. Quantum Electron. 20, 1471 (1984).

    Article  ADS  Google Scholar 

  40. A. L. McKenzie, Phys. Med. Biol. 35, 1175 (1990).

    Article  Google Scholar 

  41. K. G. Larkin, J. Opt. Soc. Am. A 13, 832 (1996).

    Article  ADS  Google Scholar 

  42. W. S. Weinberg, R. Birngruber, and B. Lorenz, IEEE J. Quantum Electron. 20, 1481 (1984).

    Article  ADS  Google Scholar 

  43. J. A. Scott, Phys. Med. Biol. 33, 227 (1988).

    Article  Google Scholar 

  44. V. Oliveira and R. Vilar, Appl. Surf. Sci. 253, 7810 (2007).

    Article  ADS  Google Scholar 

  45. R. C. Walton, J. P. Kavanagh, and B. R. Heywood, J. Struct. Biol. 143, 14 (2003).

    Article  Google Scholar 

  46. J. N. Reddy, An Introduction to the Finite Element Method (McGraw-Hill, New York, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Fu.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Q., Lü, T., Li, Z. et al. Quantitative morphological evaluation of laser ablation on calculus using full-field optical coherence microscopy. Laser Phys. 21, 1838–1843 (2011). https://doi.org/10.1134/S1054660X11170257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11170257

Keywords

Navigation