Skip to main content
Log in

Strong coupling treatment of the polaronic system consisting of an impurity in a condensate

  • Physics of Cold Trapped Atoms
  • Published:
Laser Physics

Abstract

The strong coupling treatment of the Fröhlich-type polaronic system, based on a canonical transformation and a standard Landau-Pekar type variational wave function, is applied to the polaronic system consisting of an impurity in a condensate. Within this approach the Relaxed Excited States are retrieved as a typical polaronic feature in the energy spectrum. For these states we calculate the corresponding effective mass and the minimal coupling constant required for them to occur. The present approach allows to derive approximate expressions for the transition energies between different Relaxed Excited States in a much simpler way than with the full Mori-Zwanzig approach, and with a good accuracy, which improves with increasing coupling. The transition energies obtained here can be used as the spectroscopic fingerprint for the experimental observation of Relaxed Excited States of impurities in a condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

    Article  ADS  Google Scholar 

  2. V. Nesterenko, A. Novikov, F. de Souza Cruz, and E. Lapolli, Laser Phys. 19, 616 (2009).

    Article  ADS  Google Scholar 

  3. V. Nesterenko, A. Novikov, and E. Suraud, Laser Phys. 20, 1149 (2010).

    Article  ADS  Google Scholar 

  4. F. M. Cucchietti and E. Timmermans, Phys. Rev. Lett. 96, 210401 (2006).

    Article  ADS  Google Scholar 

  5. K. Sacha and E. Timmermans, Phys. Rev. A 73, 063604 (2006).

    Article  ADS  Google Scholar 

  6. M. Bruderer, A. Klein, S. R. Clark, and D. Jaksch, New J. Phys. 10, 033015 (2008).

    Article  ADS  Google Scholar 

  7. M. Bruderer, A. Klein, S. R. Clark, R. Stephen, and D. Jaksch, Phys. Rev. A 76, 011605 (2007).

    Article  ADS  Google Scholar 

  8. A. Privitera and W. Hofstetter, Phys. Rev. A 82, 063614 (2010).

    Article  ADS  Google Scholar 

  9. J. T. Devreese, Polarons, arXiv:cond-mat/0004497v2.

  10. J. T. Devreese and A. S. Alexandrov, Advances in Polaron Physics (Springer, Berlin, 2010).

    Google Scholar 

  11. R. P. Feynman, Phys. Rev. 97, 660 (1955).

    Article  ADS  MATH  Google Scholar 

  12. E. Kartheuser, R. Evrard, and J. Devreese, Phys. Rev. Lett. 22, 94 (1969).

    Article  ADS  Google Scholar 

  13. J. Devreese, J. de Sitter, and M. Goovaerts, Phys. Rev. B 5, 2367 (1972).

    Article  ADS  Google Scholar 

  14. A. S. Mishchenko, N. Nagaosa, N. V. Prokof’ev, A. Sakamoto, and B. V. Svistunov, Phys. Rev. Lett. 91, 236401 (2003).

    Article  ADS  Google Scholar 

  15. G. De Filippis, V. Cataudella, A. S. Mishchenko, C. A. Perroni, and J. T. Devreese, Phys. Rev. Lett. 96, 136405 (2006).

    Article  ADS  Google Scholar 

  16. A. S. Alexandrov, Polarons in Advanced Materials (Springer, Berlin, 2007), pp. 257–310, and references therein.

    Book  Google Scholar 

  17. W. Casteels, J. Tempere, and J. T. Devreese, Phys. Rev. A 83, 033631 (2011).

    Article  ADS  Google Scholar 

  18. J. Tempere, W. Casteels, M. K. Oberthaler, S. Knoop, E. Timmermans, and J. T. Devreese, Phys. Rev. B 80, 184504 (2009).

    Article  ADS  Google Scholar 

  19. L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford Univ., Oxford, 2003).

    MATH  Google Scholar 

  20. L. D. Landau and S. I. Pekar, Zh. Eksp. Teor. Fiz. 16, 341 (1946); Zh. Eksp. Teor. Fiz. 18, 419 (1948).

    Google Scholar 

  21. J. Devreese and R. Evrard, Phys. Lett. 23, 196 (1966).

    Article  ADS  Google Scholar 

  22. S. I. Pekar, Untersuchungen über die elektronentheorie der Kristalle (Akademic Verlag, Berlin, 1951) [in German].

    Google Scholar 

  23. N. N. Bogoliubov, Ukr. Matem. Zh. 2, 3 (1950); in Advanced in Theoretical Physics, Ed. by E. Caianiello (World Sci., Singapore, 1991), pp. 1–18.

    MathSciNet  Google Scholar 

  24. P. Vansant, M. A. Smondyrev, F. M. Peelers, and J. T. Devreese, J. Phys. A: Math. Gen. 27, 7925 (1994).

    Article  ADS  MATH  Google Scholar 

  25. R. Evrard, Phys. Lett. 14, 295 (1965).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tempere.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casteels, W., Van Cauteren, T., Tempere, J. et al. Strong coupling treatment of the polaronic system consisting of an impurity in a condensate. Laser Phys. 21, 1480–1485 (2011). https://doi.org/10.1134/S1054660X11150035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11150035

Keywords

Navigation