Skip to main content
Log in

Laser-induced cavities and solitons in overcritical hydrogen plasma

  • Strong Field and Attosecond Physics
  • Published:
Laser Physics

Abstract

A picosecond CO2 laser was used successfully in a number of experiments exploring advanced methods of particle acceleration [1]. Proton acceleration from gas-jet plasma exemplifies another advantage of employing the increase in laser wavelength from the optical to the mid-IR region. Recent theoretical- and experimental-studies of ion acceleration from laser-generated plasma point to better ways to control the ion beam’s energy when plasma approaches the critical density. Studying this regime with solid-state lasers is problematic due to the dearth of plasma sources at the critical electron density ∼1021 cm−3, corresponding to laser wavelength λ = 1 μm. CO2 laser offers a solution. The CO2 laser’s 10 μm wavelength shifts the critical plasma density to 1019 cm−3, a value attainable with gas jets. Capitalizing on this approach, we focused a circular polarized 1-TW CO2 laser beam onto a hydrogen gas jet and observed a monoenergetic proton beam in the 1–2 MeV range. Simultaneously, we optically probed the laser/plasma interaction region with visible light, revealing holes bored by radiation pressure, as well as quasi-stationary soliton-like plasma formations. Our findings from 2D PIC simulations agree with experimental results and aid in their interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. V. Pogorelsky, M. Babzien, K. P. Kusche, I. V. Pavlishin, V. Yakimenko, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, T. Katsouleas, P. Muggli, E. Kallos, L. C. Steinhauer, A. Zigler, N. Andreev, D. B. Cline, and F. Zhou, Laser Phys. 16, 259 (2006).

    Article  ADS  Google Scholar 

  2. S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, Phys. Plasma 8, 542 (2001).

    Article  ADS  Google Scholar 

  3. T. Esirkerov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, Phys. Rev. Lett. 92, 175003 (2004).

    Article  ADS  Google Scholar 

  4. A. Macchi, F. Cattani, T. V. Liseykina, and F. Cornolti, Phys. Rev. Lett. 94, 165003 (2005).

    Article  ADS  Google Scholar 

  5. D. Farina and S. V. Bulanov, Phys. Rev. Lett. 86, 5289 (2001).

    Article  ADS  Google Scholar 

  6. S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).

    Article  ADS  Google Scholar 

  7. Y. Liu, I. V. Pogorelsky, and D. Cline, Nucl. Instrum. Metods Phys. Res. A 430, 171 (1999).

    Article  ADS  Google Scholar 

  8. L. Silva, M. Marti, J. Davies, and R. Fonseca, Phys. Rev. Lett. 92, 015002 (2004).

    Article  ADS  Google Scholar 

  9. K. Estabrook, Phys. Fluids 19, 1733 (1976).

    Article  ADS  Google Scholar 

  10. T. P. Donaldson and I. J. Spalding, Phys. Rev. Lett. 36, 467 (1976).

    Article  ADS  Google Scholar 

  11. N. M. Naumova, S. V. Bulanov, T. Zh. Esirkepov, D. Farina, K. Nishihara, F. Pegoraro, H. Ruhl, and A. S. Sakharov, Phys. Rev. Lett. 87, 185004 (2001).

    Article  ADS  Google Scholar 

  12. S. V. Bulanov, T. Zh. Esirkepov, N. M. Naumova, F. Pegoraro, and V. A. Vshivkov, Phys. Rev. Lett. 82, 3440 (1999).

    Article  ADS  Google Scholar 

  13. M. Borghesi, S. Bulanov, D. H. Campbell, R. J. Clarke, T. Zh. Esirkepov, M. Galimberti, L. A. Gizzi, A. J. Mac-Kinnon, N. M. Naumova, F. Pegoraro, H. Ruhl, A. Schiavi, and O. Willi, Phys. Rev. Lett. 88, 135002 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Pogorelsky.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogorelsky, I.V., Polyanskiy, M.N., Babzien, M. et al. Laser-induced cavities and solitons in overcritical hydrogen plasma. Laser Phys. 21, 1288–1294 (2011). https://doi.org/10.1134/S1054660X11130226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11130226

Keywords

Navigation