Skip to main content
Log in

High-order harmonic generation with a strong laser field and an attosecond-pulse train: The Dirac-Delta comb and monochromatic limits

Laser Physics

Abstract

In recent publications, it has been shown that high-order harmonic generation can be manipulated by employing a time delayed attosecond-pulse train superposed to a strong, near-infrared laser field. It is an open question, however, which is the most adequate way to approximate the attosecond-pulse train in a semianalytic framework. Employing the strong-field approximation and saddle-point methods, we make a detailed assessment of the spectra obtained by modeling the attosecond-pulse train by either a monochromatic wave or a Dirac-Delta comb. These are the two extreme limits of a real train, which is composed by a finite set of harmonics. Specifically, in the monochromatic limit, we find the downhill and uphill sets of orbits reported in the literature, and analyze their influence on the high-harmonic spectra. We show that, in principle, the downhill trajectories lead to stronger harmonics, and pronounced enhancements in the low plateau region. These features are analyzed in terms of quantum interference effects between pairs of quantum orbits, and compared to those obtained in the Dirac-Delta limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Agostini and L. DiMauro, Rep. Prog. Phys. 67, 813 (2004).

    Article  ADS  Google Scholar 

  2. M. Hentschel, R. Kienberger, Ch. Spielmann, et al., Nature 414, 509 (2001).

    Article  ADS  Google Scholar 

  3. M. Schnürer, Ch. Streli, P. Wobrauschek, et al., Phys. Rev. Lett. 85, 3392 (2000); M. Drescher, M. Hentschel, R. Kienberger, et al., Nature 419, 803 (2002).

    Article  ADS  Google Scholar 

  4. H. Niikura, F. Légaré, R. Hasbani, et al., Nature 417, 917 (2002).

    Article  ADS  Google Scholar 

  5. R. Kienberger, M. Hentschel, M. Uiberacker, et al., Science 297, 1144 (2002); A. Baltuska, Th. Udem, M. Uiberacker, et al., Nature 421, 611 (2003).

    Article  ADS  Google Scholar 

  6. Ph. Antoine, A. L’Huillier, and M. Lewenstein, Phys. Rev. Lett. 77, 1234 (1996).

    Article  ADS  Google Scholar 

  7. N. A. Papadogianis, B. Witzel, C. Kalpouzos, and D. Charalambidis, Phys. Rev. Lett. 83, 4289 (1999); P. M. Paul, E. S. Toma, P. Breger, et al., Science 292, 1689 (2001).

    Article  ADS  Google Scholar 

  8. M. Drescher, M. Hentschel, R. Kienberger, et al., Science 291, 1923 (2001).

    Article  ADS  Google Scholar 

  9. Y. Mairesse, A. de Bohan, L. J. Frasinski, et al., Science 302, 1540 (2003).

    Article  ADS  Google Scholar 

  10. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).

    Article  ADS  Google Scholar 

  11. K. J. Schafer, M. B. Gaarde, A. Heinrich, et al., Phys. Rev. Lett. 92, 023003 (2004); M. B. Gaarde, K. J. Schafer, A. Heinrich, et al., Phys. Rev. A 72, 013411 (2005); J. Biegert, A. Heinrich, C. P. Hauri, et al., J. Mod. Opt. 53, 87 (2006); J. Biegert, A. Heinrich, C. P. Hauri, et al., Laser Phys. 15, 899 (2005).

  12. P. Johnsson, K. Varjú, T. Remetter, et al., J. Mod. Opt. 53, 233 (2006).

    Article  ADS  Google Scholar 

  13. P. Johnsson, R. López-Martens, S. Kazamias, et al., Phys. Rev. Lett. 95, 013001 (2005).

    Google Scholar 

  14. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993); K. C. Kulander, K. J. Schafer, and J. L. Krause, in Proceedings of the SILAP Conference, Ed. by B. Piraux et al. (Plenum, New York, 1993).

    Article  ADS  Google Scholar 

  15. C. Figueira de Morisson Faria, P. Salières, P. Villain, and M. Lewenstein, Phys. Rev. A 74, 053416 (2006).

  16. M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, et al., Phys. Rev. A 49, 2117 (1994); W. Becker, S. Long, and J. K. McIver, Phys. Rev. A 41, 4112 (1990); Phys. Rev. A 50, 1540 (1994); M. Lewenstein, K. C. Kulander, K. J. Schafer, and Ph. Bucksbaum, Phys. Rev. A 51, 1495 (1995)

    Article  ADS  Google Scholar 

  17. P. Salières, B. Carré, L. LeDéroff, et al., Science 292, 902 (2001).

    Article  ADS  Google Scholar 

  18. C. Figueira de Morisson Faria, H. Schomerus, and W. Becker, Phys. Rev. A 66, 043413 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueira de Morisson Faria, C., Salières, P. High-order harmonic generation with a strong laser field and an attosecond-pulse train: The Dirac-Delta comb and monochromatic limits. Laser Phys. 17, 390–400 (2007). https://doi.org/10.1134/S1054660X07040147

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07040147

PACS numbers

Navigation