Skip to main content
Log in

Structural and Phase Changes in Concentrated V–Nb–Ta–Ti Solid Solutions Irradiated by Helium Ions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of irradiation by low-energy helium ions with a fluence of 2 × 1017 cm–2 and an energy of 40 keV on the structure and phase state of V–Nb–Ta–Ti solid solutions is studied to obtain data on the radiation resistance of multicomponent solid solutions promising for use as structural materials of new generation reactors. It is established by scanning electron microscopy and X-ray diffraction analysis that the synthesized binary, ternary, and quaternary V–Nb–Ta–Ti alloys are equiatomic single-phase solid solutions with a uniform element distribution over the surface and compressive microstresses and macrostresses. It is shown that irradiation of the V–Nb–Ta–Ti alloys by helium ions leads to neither the decay of a solid solution nor violation of the uniform equiatomic distribution of elements over the surface. Irradiation by helium ions does not significantly change the level of microstresses and macrostresses in the VNb and VNbTa systems, while in the VNbTaTi alloy the compressive-stress level increases, which can be related to the segregation of elements to grain boundaries and the accumulation of helium-vacancy clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. R. C. Armstrong, C. Wolfram, K. de Jong, et al., Nat. Energy 1, 15020 (2016). https://doi.org/10.1038/nenergy.2015.20

    Article  Google Scholar 

  2. S. J. Zinkle and J. T. Busby, Mater. Today 12, 12 (2009). https://doi.org/10.1016/S1369-7021(09)70294-9

    Article  CAS  Google Scholar 

  3. J. Henry and S. A. Maloy, Structural Materials for Generation IV Nuclear Reactors (Elsevier, Amsterdam, 2017). https://doi.org/10.1016/B978-0-08-100906-2.00009-4

  4. K. Murty and I. Charit, J. Nucl. Mater. 383, 189 (2008). https://doi.org/10.1016/j.jnucmat.2008.08.044

    Article  CAS  Google Scholar 

  5. S. J. Zinkle, K. A. Terrani, and L. L. Snead, Curr. Opin. Solid State Mater. Sci. 20, 401 (2016). https://doi.org/10.1016/j.cossms.2016.10.004

    Article  CAS  Google Scholar 

  6. K. Jin and H. Bei, Front. Mater. 5, 1 (2018). https://doi.org/10.3389/fmats.2018.00026

    Article  CAS  Google Scholar 

  7. J. W. Yeh, Y. L. Chen, S. J. Lin, et al., Mater. Sci. Forum 560, 1 (2007). https://doi.org/10.4028/www.scientific.net/MSF.560.1

    Article  CAS  Google Scholar 

  8. M.-H. Tsai and J.-W. Yeh, Mater. Res. Lett. 2, 107 (2014). https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  9. Y. Jien-Wei, Ann. Chim. Sci. Mater. 31, 633 (2006). https://doi.org/10.3166/acsm.31.633-648

    Article  Google Scholar 

  10. D. B. Miracle and O. N. Senkov, Acta Mater. 122, 448 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  11. N. Sellami, A. Debelle, M. W. Ullah, et al., Curr. Opin. Solid State Mater. Sci. 23, 107 (2019). https://doi.org/10.1016/j.cossms.2019.02.002

    Article  CAS  Google Scholar 

  12. K. Jin, S. Mu, K. An, et al., Mater. Des. 117, 185 (2017). https://doi.org/10.1016/j.matdes.2016.12.079

    Article  CAS  Google Scholar 

  13. E. Zarkadoula, G. Samolyuk, and W. J. Weber, Comput. Mater. Sci. 162, 156 (2019). https://doi.org/10.1016/j.commatsci.2019.02.039

    Article  CAS  Google Scholar 

  14. S. Zhao, G. M. Stocks, and Y. Zhang, Phys. Chem. Chem. Phys. 18, 24043 (2016). https://doi.org/10.1039/C6CP05161H

    Article  CAS  Google Scholar 

  15. S. Zhao, T. Egami, G. M. Stocks, et al., Phys. Rev. Mater. 2, 013602 (2018). https://doi.org/10.1103/physrevmaterials.2.013602

    Article  CAS  Google Scholar 

  16. S. Zhao, Y. Osetsky, and A. V. Barashev, Acta Mater. 173, 184 (2019). https://doi.org/10.1016/j.actamat.2019.04.060

    Article  CAS  Google Scholar 

  17. C. Lu, L. Niu, and N. Chen, Nat. Commun. 7, 13564 (2016). https://doi.org/10.1038/ncomms13564

    Article  CAS  Google Scholar 

  18. C. Lu, T. Yang, and L. Niu, J. Nucl. Mater. 509, 237 (2018). https://doi.org/10.1016/j.jnucmat.2018.07.006

    Article  CAS  Google Scholar 

  19. S. J. Zinkle and G. S. Was, Acta Mater. 61, 735 (2013). https://doi.org/10.1016/j.actamat.2012.11.004

    Article  CAS  Google Scholar 

  20. S. Agarwal, P. Trocellier, and Y. Serruys, Nucl. Instrum. Methods Phys. Res., Sect. B 327, 117 (2014). https://doi.org/10.1016/j.actamat.2016.08.062

    Article  CAS  Google Scholar 

  21. M. Birkholz, Thin Film Analysis by X-ray Scattering (Wiley, New York, 2005).

    Book  Google Scholar 

  22. D. Nath, F. Singh, and R. Das, Mater. Chem. Phys. 239, 122021 (2020). https://doi.org/10.1016/j.matchemphys.2019.122021

    Article  CAS  Google Scholar 

  23. P. S. Prevey, X-ray diffraction residual stress techniques, in Materials Characterization, ASM Handbook, Vol. 10, Ed. by R. E. Whan (ASM Int., 1986), p. 380. https://doi.org/10.31399/asm.hb.v10.a0001761

  24. F. Z. James, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  CAS  Google Scholar 

  25. N. Jia, Y. Li, and H. Huang, Curr. Opin. Solid State Mater. Sci. 550, 152937 (2021). https://doi.org/10.1016/j.jnucmat.2021.152937

    Article  CAS  Google Scholar 

  26. R. Kozak, A. Sologubenko, and W. Steurer, Cryst. Mater. 230, 55 (2015). https://doi.org/10.1515/zkri-2014-1739

    Article  CAS  Google Scholar 

  27. H. Trinkaus and B. N. Singh, J. Nucl. Mater. 323, 229 (2003). https://doi.org/10.1016/j.jnucmat.2003.09.001

    Article  CAS  Google Scholar 

  28. N. Jia, Y. Li, H. Huang, et al., J. Nucl. Mater. 550, 152937 (2021). https://doi.org/10.1016/j.jnucmat.2021.152937

    Article  CAS  Google Scholar 

  29. B. Kombaiah, K. Jin, H. Bei, et al., Mater. Des. 160, 1208 (2018). https://doi.org/10.1016/j.matdes.2018.11.006

    Article  CAS  Google Scholar 

  30. M. R. He, S. Wang, S. Shi, K. Jin, et al., Acta Mater. 126, 182 (2017). https://doi.org/10.1016/j.actamat.2016.12.046

    Article  CAS  Google Scholar 

  31. R. W. Harrison, G. Greaves, H. Le, et al., Curr. Opin. Solid State Mater. Sci. 23, 100762 (2019). https://doi.org/10.1016/j.cossms.2019.07.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Uglov or S. V. Zlotski.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uglov, V.V., Zlotski, S.V., Belov, M.M. et al. Structural and Phase Changes in Concentrated V–Nb–Ta–Ti Solid Solutions Irradiated by Helium Ions. J. Surf. Investig. 17, 208–215 (2023). https://doi.org/10.1134/S102745102301041X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102301041X

Keywords:

Navigation