Skip to main content
Log in

Magnetism of Surface-Modified and Gallium-Doped Magnetite Particles

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

New data on gallium ferrite particles are reported. The results of studies of Fe3O4/GaxFe3 – xO4 and GaxFe3 – xO4/Fe3O4 (x = 0.2, 0.4, 0.6 and 0.8) nanoparticles by X-ray and neutron diffraction, small angle neutron scattering, transmission electron microscopy, magnetization measurements, and Mössbauer spectroscopy. The cubic core–shell ferrites structures were confirmed as single phases with a cell parameter of ∼8.388 Å independent of gallium content. The lack of preferences in occupancies of gallium sites was confirmed. The magnetic structure at room temperature, the stability of a disaggregated dispersion of nanoparticles in the temperature range 20–50°C, the radii of the cores, and the thickness of the coating layers, as well as the specific absorption of electromagnetic radiation rates were characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. B. F. Bogacz, R. Gargula, P. Kurzydło, A. T. Pędziwiatr, T. Tatarchuk, and N. Paliychuk, Acta Phys. Pol., A. 134 , 993 (2018). https://doi.org/10.12693/APhysPolA.134.993

    Article  CAS  Google Scholar 

  2. K. Rećko, J. Waliszewski, U. Klekotka, D. Soloviov, G. Ostapczuk, D. Satuła, M. Biernacka, M. Balasoiu, A. Basa, B. Kalska-Szostko, and K. Szymański, Phase Transitions 91, 128 (2018). https://doi.org/10.1080/01411594.2017.1409351

    Article  CAS  Google Scholar 

  3. L. Vekas, D. Bica, and O. Marinica, Rom. Rep. Phys. 58, 257 (2006).

    CAS  Google Scholar 

  4. U. Klekotka, D. Satuła, S. Spassov, and B. Kalska-Szostko, Colloids Surf., A 537, 542 (2018).

    Article  Google Scholar 

  5. K. Rećko, U. Klekotka, B. Kalska-Szostko, D. Soloviov, D. Satuła, and J. Waliszewski, Acta Phys. Pol., A. 134, 998 (2018). https://doi.org/10.12693/APhysPolA.134.998

    Article  Google Scholar 

  6. W. Brullot, N. K. Reddy, J. Wouters, V. K. Valev, B. Goderis, J. Vermant, and T. Verbiest, J. Magn. Magn. Mater. 324, 1919 (2012). https://doi.org/10.1016/j.jmmm.2012.01.032

    Article  CAS  Google Scholar 

  7. M. Banobre-Lopez, A. Teijeiro, and J. Rivas, Rep. Pract. Oncol. Radiother. 18, 397 (2013). https://doi.org/10.1016/j.rpor.2013.09.011

    Article  Google Scholar 

  8. S. D. Bader, Rev. Mod. Phys. 78, 1 (2006). https://doi.org/10.1103/RevModPhys.78.1

    Article  CAS  Google Scholar 

  9. I. Hilder, W. Andrä, R. Hergt, R. Hiergeist, H. Schubert, and W. A. Kaiser, Radiology 218, 570 (2001). https://doi.org/10.1148/radiology.218.2.r01fe19570

    Article  Google Scholar 

  10. Ch.-Y. Lin and K.-Ch. Ho, inNSTINanotech 2007,Techn. Proc., p. 425.

  11. A. M. Balagurov, A. I. Beskrovnyi, V. V. Zhuravlev, G. M. Mironova, I. A. Bobrikov, D. Neov, and S. G. Sheverev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 467 (2016).

    Article  CAS  Google Scholar 

  12. Real-Time Neutron Diffractometer. http://flnph. jinr.ru/en/facilities/ibr-2/instruments/dn-2.

  13. J. Rodriguez-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993).

    Article  CAS  Google Scholar 

  14. Introduction to PANalytical. http://prism.mit.edu/xray/ HighScore%20Plus%20Guide.pdf/2017.

  15. A. I. Kuklin, A. D. Rogov, Y. E. Gorshkova, et al., Phys. Part. Nucl. Lett. 8, 119 (2011). https://doi.org/10.1134/S1547477111020075.

    Article  CAS  Google Scholar 

  16. A. I. Kuklin, D. V. Soloviov, A. V. Rogachev, et al., J. Phys.: Conf. Ser. 291, 012013 (2011). https://doi.org/10.1088/1742-6596/291/1/012013

    Article  CAS  Google Scholar 

  17. SAS-View, Small Angle Scattering Analysis Software Package. http://www.sasview.org/2017.

  18. R. R. Wildeboer, P. Southern, and A. Pankhurst, J. Phys. D: Appl. Phys. 47, 49 (2014). https://doi.org/10.1088/0022-3727/47/49/495003.

    Article  CAS  Google Scholar 

  19. A. Miaskowski, Magnetic Fluid Hyperthermia Treatment Planning Correlated with Calorimetric Measurements under Non-Adiabatic Conditions (Libropolis, Lublin, 2018).

    Google Scholar 

  20. A. Miaskowski, B. Sawicki, and M. Subramanian, Bull. Pol. Acad. Sci.: Tech. Sci. 4, 66 (2018). https://doi.org/10.24425/123928

    Article  CAS  Google Scholar 

  21. S. H. Sun and H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002).

    Article  CAS  Google Scholar 

  22. K. Kalska-Szostko, U. Wykowska, and D. Satuła, Colloids Surf., A 481, 527 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Urszula Klekotka from Faculty of Chemistry of the University of Bialystok for sample preparation.

Funding

This work was partially supported by the National Science Centre (grant OPUS no. 2018/31/B/ST3/00279) and the Polish Government Plenipotentiary at JINR in Dubna (Project no. 04-4-1121-2015/2020), and also received financial support from the Polish Ministry of Science and Higher Education as subsidy for maintaining the research potential of the Faculty of Physics, University of Bialystok.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rećko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rećko, K., Satuła, D., Waliszewski, J. et al. Magnetism of Surface-Modified and Gallium-Doped Magnetite Particles. J. Surf. Investig. 14 (Suppl 1), S85–S92 (2020). https://doi.org/10.1134/S102745102007040X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102007040X

Keywords:

Navigation