Skip to main content
Log in

Polarization and Interference Effects in the Resonant Diffraction of Synchrotron Radiation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The features of the technique of resonant synchrotron-radiation (SR) diffraction are considered. The energy, angular, polarization, and temperature dependences of Bragg reflections at incident radiation energies that are close to the absorption edges of material atoms are studied using this technique. These dependences contain information about the electronic, magnetic, and structural features of the objects under study. The contribution of several scattering channels to the formation of the diffraction spectrum leads to the appearance of interference effects making it possible to obtain information about the scattered radiation phase. Results of some studies of resonant SR diffraction performed at the Kurchatov SR source are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. Materlik, J. Spark, and K. Fisher, Resonant Anomalous X-Ray Scattering (Elsevier, Amsterdam, 1994).

    Google Scholar 

  2. Y. Murakami and S. Ishihara, Resonant X-Ray Scattering in Correlated Systems (Springer, Berlin-Heidelberg, 2017).

    Book  Google Scholar 

  3. C. Vettier, Eur. Phys. J. Spec. Top. 208, 3 (2012). https://doi.org/10.1140/epjst/e2012-01602-7

    Article  CAS  Google Scholar 

  4. A. Kotani and S. Shin, Rev. Mod. Phys. 73, 203 (2001). https://doi.org/10.1103/RevModPhys.73.203

    Article  CAS  Google Scholar 

  5. L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, et al., Rev. Mod. Phys. 83, 705 (2011). https://doi.org/10.1103/RevModPhys.83.705

    Article  CAS  Google Scholar 

  6. J. L. Hodeau, V. Favre-Nicolin, S. Bos, et al., Chem. Rev. 101, 1843 (2001). https://doi.org/10.1021/cr0000269

    Article  CAS  Google Scholar 

  7. V. Favre-Nicolin, M. G. Proietti, C. Leclere, et al., Eur. Phys. J. Spec. Top. 208, 189 (2012). https://doi.org/10.1140/epjst/e2012-01619-x

    Article  CAS  Google Scholar 

  8. V. E. Dmitrienko and E. N. Ovchinnikova, Crystallogr. Rep. 48, S52 (2003).

    CAS  Google Scholar 

  9. T. A. W. Beale, G. Beutier, S. R. Bland, et al., Eur. Phys. J. Spec. Top. 208, 89 (2012). https://doi.org/10.1140/epjst/e2012-01609-0

    Article  CAS  Google Scholar 

  10. D. H. Templeton and L. K. Templeton, Acta Crystallogr., Sect. A 36, 237 (1980). https://doi.org/10.1107/S0567739480000472

    Article  Google Scholar 

  11. V. E. Dmitrienko, Acta Crystallogr., Sect. A 39, 29 (1983). https://doi.org/10.1107/S0108767383000057

    Article  Google Scholar 

  12. V. E. Dmitrienko, Acta Crystallogr., Sect. A 40, 89 (1984). https://doi.org/10.1107/S0108767384000209

    Article  Google Scholar 

  13. D. H. Templeton and L. K. Templeton, Acta Crystallogr., Sect. A 41, 133 (1985). https://doi.org/10.1107/S0108767385000277

    Article  Google Scholar 

  14. J. Kokubun and V. E. Dmitrienko, Eur. Phys. J. Spec. Top. 208, 39 (2012). https://doi.org/10.1140/epjst/e2012-01605-4

    Article  CAS  Google Scholar 

  15. V. E. Dmitrienko, K. Ishida, A. Kirfel, and E. N. Ovchinnikova, Acta Crystallogr., Sect. A 61, 481 (2005). https://doi.org/10.1107/S0108767305018209

    Article  CAS  Google Scholar 

  16. Y. Murakami, J. P. Hill, D. Gibbs, et al., Phys. Rev. Lett. 81, 582 (1998). https://doi.org/10.1103/PhysRevLett.81.582

    Article  CAS  Google Scholar 

  17. S. W. Lovesey, E. Balcar, K. S. Knight, and J. Fernández Rodriguez, Phys. Rep. 411, 233 (2005). https://doi.org/10.1016/j.physrep.2005.01.00

    Article  CAS  Google Scholar 

  18. M. Zschornak, C. Richter, M. Nentwich, et al., Cryst. Res. Technol. 49, 43 (2014). https://doi.org/10.1002/crat.201300430

    Article  CAS  Google Scholar 

  19. V. E. Dmitrienko and E. N. Ovchinnikova, Acta Crystallogr. A 57, 642 (2001). https://doi.org/10.1107/S010876730100890X

    Article  CAS  Google Scholar 

  20. J. Kokubun, A. Watanabe, M. Uehara, et al., Phys. Rev. B 78, 115112 (2008). https://doi.org/10.1103/PhysRevB.78.115112

    Article  CAS  Google Scholar 

  21. S. Ji, C. Song, J. Koo, et al., Phys. Rev. Lett. 91, 257205 (2003). https://doi.org/10.1103/PhysRevLett.91.257205

    Article  CAS  Google Scholar 

  22. J. Kokubun, M. Kanazawa, K. Ishida, and V. E. Dmitrienko, Phys. Rev. B 64, 073203 (2001). https://doi.org/10.1103/PhysRevB.64.073203

    Article  CAS  Google Scholar 

  23. S. P. Collins, D. Laundy, V. E. Dmitrienko, et al., Phys. Rev. B 68, 064110 (2003). https://doi.org/10.1103/PhysRevB.68.064110

    Article  CAS  Google Scholar 

  24. G. Beutier, S. P. Collins, G. Nisbet, et al., Eur. Phys. J. Spec. Top. 208, 53 (2012). https://doi.org/10.1140/epjst/e2012-01606-3

    Article  CAS  Google Scholar 

  25. A. P. Oreshko, Crystallogr. Rep. 59, 6 (2014). https://doi.org/10.7868/S002347611401010X

    Article  CAS  Google Scholar 

  26. V. A. Belyakov and V. E. Dmitrienko, Usp. Fiz. Nauk 158, 679 (1989). https://doi.org/10.3367/UFNr.0158.198908e.0679

    Article  CAS  Google Scholar 

  27. G. Van der Laan, in Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources (Springer, Cham, 2013), p. 257.

    Google Scholar 

  28. A. Rogalev, F. Wilhelm, J. Goulon, and G. Goujon, in Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources (Springer, Cham, 2013), p. 289.

    Google Scholar 

  29. A. Rogalev, J. Goulon, F. Wilhelm, and A. Bosak, in Magnetism and Synchrotron Radiation: New Trends (Springer, Berlin–Heidelberg, 2010), p. 169.

    Google Scholar 

  30. V. E. Dmitrienko, E. N. Ovchinnikova, J. Kokubun, and K. Ishida, JETP Lett 92, 383 (2010).

    Article  CAS  Google Scholar 

  31. M. Blume, Resonant Anomalous X-Ray Scattering (Elsevier, New York, 1991).

    Google Scholar 

  32. Y. Joly, S. Di Matteo, and O. Bunau, Eur. Phys. J. Spec. Top. 208, 21 (2012). https://doi.org/10.1140/epjst/e2012-01604-5

    Article  CAS  Google Scholar 

  33. A. M. Kolchinskaya, A. N. Artem’ev, V. E. Dmitrienko, et al., Crystallogr. Rep. 51, 192 (2006).

    Article  CAS  Google Scholar 

  34. E. Kh. Mukhamedzhanov, M. V. Koval’chuk, M. M. Borisov, et al., J. Exp. Theor. Phys. 112, 94 (2011).

    Article  CAS  Google Scholar 

  35. G. Beutier, E. N. Ovchinnikova, S. P. Collins, et al., J. Phys.: Cond. Mat. 21, 265402 (2009). https://doi.org/10.1088/0953-8984/21/26/265402

    Article  CAS  Google Scholar 

  36. J. R. Roberto, B. W. Batterman, and D. T. Keating, Phys. Rev. B 9, 2590 (1974). https://doi.org/10.1103/PhysRevB.9.2590

    Article  CAS  Google Scholar 

  37. J. Z. Tischler and B. W. Batterman, Phys. Rev. B 30, 7060 (1984). https://doi.org/10.1103/PhysRevB.30.7060

    Article  CAS  Google Scholar 

  38. V. Dmitrienko and E. Ovchinnikova, Acta Crystallogr., Sect. A 56, 340 (2000). https://doi.org/10.1107/S0108767300003421

    Article  Google Scholar 

  39. V. E. Dmitrienko, E. N. Ovchinnikova, K. Ishida, et al., Phys. Status Solidi C 1, 3081 (2004). https://doi.org/10.1002/pssc.200405396

    Article  CAS  Google Scholar 

  40. E. Kh. Mukhamedzhanov, M. M. Borisov, A. N. Morkovin, et al., JETP Lett. 86 (12), 783 (2007).

    Article  CAS  Google Scholar 

  41. E. Kh. Mukhamedzhanov, M. V. Koval’chuk, M. M. Borisov, et al., Crystallogr. Rep. 55, 174 (2010).

    Article  CAS  Google Scholar 

  42. E. N. Ovchinnikova and E. Kh. Mukhamedzhanov, Crystallogr. Rep. 61, 768 (2016). https://doi.org/10.7868/S0023476116050179

    Article  CAS  Google Scholar 

  43. C. Richter, D. V. Novikov, E. K. Mukhamedzhanov, et al., Phys. Rev. B 89, 094110 (2014). https://doi.org/10.1103/PhysRevB.89.094110

    Article  CAS  Google Scholar 

  44. F. Iona and D. Shirane, Ferroelectric Crystals (McMillan, New York, 1962; Mir, Moscow, 1965).

  45. J. C. Slater, J. Chem. Phys. 9, 16 (1941). https://doi.org/10.1063/1.1750821

    Article  CAS  Google Scholar 

  46. Y. Takagi, J. Phys. Soc. Jpn. 3, 271 (1948). https://doi.org/10.1143/JPSJ.3.271

    Article  Google Scholar 

  47. E. N. Ovchinnikova and V. E. Dmitrienko, Acta Crystallogr. A 56, 2 (2000). https://doi.org/10.1107/S0108767399010211

    Article  CAS  Google Scholar 

  48. E. N. Ovchinnikova, V. E. Dmitrienko, A. P. Oreshko, et al., J. Phys.: Cond. Mat. 22, 355404 (2010). https://doi.org/10.1088/0953-8984/22/35/355404

    Article  CAS  Google Scholar 

  49. G. Beutier, S. P. Collins, G. Nisbet, et al., Phys. Rev. B 92, 214116 (2015). https://doi.org/10.1103/PhysRevB.92.214116

    Article  CAS  Google Scholar 

  50. G. Beutier, S. P. Collins, O. V. Dimitrova, et al., Phys. Rev. Lett. 119, 167201 (2017). https://doi.org/10.1103/PhysRevLett.119.167201

    Article  CAS  Google Scholar 

  51. V. E. Dmitrienko, E. N. Ovchinnikova, S. P. Collins, et al., Nat. Phys. 10, 202 (2014). https://doi.org/10.1038/nphys2859

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed using resources of the supercomputer complex of Moscow State University and supported in part by the Russian Foundation for Basic Research (grant nos. 16-02-00887 and 19-52-12 029) and by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State assignment of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences in the theoretical part and by the Presidium of the Russian Academy of Sciences in the part of description of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Ovchinnikova.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, M.M., Dmitrienko, V.E., Kozlovskaya, K.A. et al. Polarization and Interference Effects in the Resonant Diffraction of Synchrotron Radiation. J. Surf. Investig. 13, 925–933 (2019). https://doi.org/10.1134/S1027451019050239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019050239

Keywords:

Navigation