Skip to main content
Log in

Resonance capture of electrons and positrons in the axial channeling mode at a crystal surface

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The motion of channeled particles in a single crystal is determined by the continuous potential of the crystallographic axes. The transverse motion of particles in the axial channeling mode is characterized by a discrete energy spectrum. In this paper, the criteria for selection of the continuous potential and the conditions for quantization of the transverse energy for axially channeled particles are discussed, and the criterion for the resonance capture of particles in the axial channeling mode during particle entrance into a single crystal is formulated; it requires that the particle’s angular momentum with respect to the channel axis coincides with a quantity that is a multiple of Planck’s constant. The effect of resonance capture can be observed, for example, via an increase in the intensity of electromagnetic radiation of the beam of channeled particles in the optical range at frequencies corresponding to transitions between the allowed levels of transverse motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lindhar., K. Dan. Vidensk. Selsk., Mat.-Fys. Medd. 34 (14), 1 (1965).

    Google Scholar 

  2. V. G. Baryshevkii, Channeling. Emission and Reactions in Single Crystals under High Energy (Belarusian State Univ., Minsk, 1982) [in Russian].

    Google Scholar 

  3. S. A. Vorob’ev, Electron Beams Channeling (Energoatomizdat, Moscow, 1984) [in Russian].

    Google Scholar 

  4. N. P. Kalashnikov, Coherent Interactions of Charged Particles in Single Crystals (Scattering and Radiative Processes in Single Crystals) (Harwood Acad. Publ., London, Paris, New York, 1988).

    Google Scholar 

  5. V. A. Ryabov, Channeling Effect (Energoatomizdat, Moscow, 1994) [in Russian].

    Google Scholar 

  6. Proc. Int. Conference “Channelling 2012”, Ed. by S. Dabagov and M. Strikhanov (National Research Nuclear Univ. “Moscow Engineering Physics Institute”, Moscow, 2013).

  7. N. P. Kalashnikov, A. S. Olchak, and E. V. Khangulia., Nucl. Instrum. Methods Phys. Res., Sect. B 309, 67 (2013).

    Article  Google Scholar 

  8. N. P. Kalashnikov, E. A. Mazur, and A. S. Olcha., Int. J. Mod. Phys. A 30, 22 (2015). doi 10.1142/S0217751X15501377

    Article  Google Scholar 

  9. N. P. Kalashnikov, E. A. Mazur, and A. S. Olcha., Phys. Procedia 72, 528 (2015).

    Article  Google Scholar 

  10. N. P. Kalashnikov, E. I. Mulyarchik, and A. S. Olcha., Phys. Procedia 74, 165 (2015).

    Article  Google Scholar 

  11. N. P. Kalashnikov and A. S. Olcha., Nucl. Instrum. Methods Phys. Res., Sect. B 355, 121 (2015). doi 10.1016/j.nimb.2015.02.035

    Article  Google Scholar 

  12. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 3: Quantum Mechanics (Addison-Wesley, Reading, MA, 1963).

    Google Scholar 

  13. N. P. Kalashnikov and M. A. Smondyrev, Foundations of Physics (Drofa, Moscow, 2004), Vol. 2 [in Russian].

    Google Scholar 

  14. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Pergamon Press, Oxford, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Kalashnikov.

Additional information

Original Russian Text © N.P. Kalashnikov, A.S. Olchak, 2017, published in Poverkhnost’, 2017, No. 6, pp. 79–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashnikov, N.P., Olchak, A.S. Resonance capture of electrons and positrons in the axial channeling mode at a crystal surface. J. Surf. Investig. 11, 646–649 (2017). https://doi.org/10.1134/S1027451017030284

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451017030284

Keywords

Navigation