Skip to main content
Log in

Resonance functions in the theory of collisional broadening of molecule spectral lines at low temperatures

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Eleven resonance functions are calculated in the exact trajectory model, which can be used for calculation of broadening coefficients γ of molecular lines during interactions with atoms of inert gases at very low temperatures. These functions correspond to the atom-atom potential and the potential V(R, θ) written in terms of Legendre polynomials. The functions are represented in analytical form. The broadening coefficients γ are calculated for absorption lines of CO perturbed by He and Ar at temperatures T from 300 to 2 K using the potential V(R, θ). It is shown that the dependence γ(T) for low temperatures T is determined by the potential well depth. For the CO–He system, a comparison with the experimental data is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Willey, D. N. Bittner, and F. C. De Lucia, “Pressure broadening cross sections for H2S–He system in the temperature region between 4.3 and 1.8 K,” J. Mol Spectrosc. 134, 240–242 (1989).

    Article  ADS  Google Scholar 

  2. D. C. Flatin, T. M. Goyette, M. M. Beaky, C. D. Ball, and F. C. De Lucia, “Rotational state dependence of collision induced line broadening and shift at low temperature,” J. Chem. Phys. 110, 2087–2098 (1999).

    Article  ADS  Google Scholar 

  3. M. J. Dick, B. J. Drouin, and J. C. Pearson, “A collisional cooling investigation of the pressure broadening of the 110 ← 101 transition of water from 17 to 200 K,” J. Quant. Spectrosc. Radiat. Transfer 110, 619–627 (2009).

    Article  ADS  Google Scholar 

  4. M. J. Dick, B. J. Drouin, and J. C. Pearson, “Collision cooling investigation of THz rotational of water,” Phys. Rev., A 81, Art. N 022706 (2010).

    Google Scholar 

  5. D. R. Willey, R. L. Crownover, D. N. Bittner, and F. C. De Lucia, “Very low temperature spectroscopy. The pressure broadening coefficients for CO–He between 4.3 and 1.7 K,” J. Chem. Phys. 89, 1923–1928 (1988).

    Article  ADS  Google Scholar 

  6. D. R. Willey, T. M. Goyette, W. L. Ebenstein, D. N. Bittner, and F. C. De Lucia, “Collision cooling spectroscopy. Pressure broadening below 5 K,” J. Chem. Phys. 91, 122–125 (1989).

    Article  ADS  Google Scholar 

  7. M. M. Beaky, T. M. Goyette, and F. C. De Lucia, “Pressure broadening and line shift measurements of carbon monoxide in collision with helium from 1 to 600 kelvin,” J. Chem. Phys. 105, 3994–4004 (1996).

    Article  ADS  Google Scholar 

  8. C. D. Ball, M. Mengel, F. C. De Lucia, and D. E. Woon, “Quantum scattering calculations for H2S–He between 1–600 K in comparison with pressure broadening, shift, and time resolved double resonance experiments,” J. Chem. Phys. 111, 8893–8903 (1999).

    Article  ADS  Google Scholar 

  9. M. Thachuk, C. E. Chuaqui, and R. J. Le Roy, “Linewidths and shifts of very low temperature CO in He: A challenge for theory or experiment,” J. Chem. Phys. 105, 4005–4014 (1996).

    Article  ADS  Google Scholar 

  10. T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. I. Starikov, “Vibrational dependence of an intermolecular potential for H2O–He system,” J. Quant. Spectrosc. Radiat. Transfer 129, 241–253 (2013).

    Article  ADS  Google Scholar 

  11. V. I. Starikov, “Broadening of vibrational-rotational lines of the H2S molecule by pressure of monatomic gases,” Opt. Spectrosc. 115, 18–27 (2013).

    Article  ADS  Google Scholar 

  12. C. J. Tsao and B. Curnutte, “Line-widths of pressurebroadening spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41–91 (1962).

    Article  ADS  Google Scholar 

  13. D. Robert and J. Bonamy, “Short range effects in semiclassical molecular line broadening calculations,” J. Phys. (Paris) 40, 923–943 (1979).

    Article  Google Scholar 

  14. A. D. Bykov, N. N. Lavrent’eva, and L. N. Sinitsa, “Resonance functions of the theory of broadening and shift of lines for actual trajectories,” Atmos. Ocean. Opt. 5 (11), 728–730 (1992).

    Google Scholar 

  15. V. I. Starikov and N. N. Lavrent’eva, Collisional Broadening of Spectral Lines of Absorption by Atmospheric Gas Molecules (Publishing House of IAO SB RAS, Tomsk, 2006) [in Russian].

    Google Scholar 

  16. J. Buldyreva, N. N. Lavrent’eva, and V. I. Starikov, Collisional Line Broadening and Shifting of Atmospheric Gases. A Practical Guide for Line Shape Modeling by Current Semi-Classical Approaches (Imperial College Press, London, 2010).

    Book  Google Scholar 

  17. E. W. Smith, M. Giraud, and J. Cooper, “A semiclassical theory for spectral line broadening in molecules,” J. Chem. Phys. 65, 1256–1267 (1976).

    Article  ADS  Google Scholar 

  18. B. Labani, J. Bonamy, D. Robert, J.-M. Hartmann, and J. Taine, “Collisional broadening of rotationvibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84, 4256–4267 (1986).

    Article  ADS  Google Scholar 

  19. V. I. Starikov, “Bi-resonance functions in the theory of collisional broadening of the spectral lines of molecules,” Opt. Spectrosc. 112, 27–34 (2012).

    Article  ADS  Google Scholar 

  20. L. Bidenkharn and Dzh. Lauk, Angular Momentum in Quantum Physics (Mir, Moscow, 1984) [in Russian].

    Book  Google Scholar 

  21. L. D. Landau and E. M. Lifshits, The Theory of Elasticity (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  22. S. Green, “Calculation of pressure broadening parameters for the CO–He system at low temperatures,” J. Chem. Phys. 82, 4548–4550 (1985).

    Article  ADS  Google Scholar 

  23. P. M. Sinclair, P. Duggan, R. Berman, J. R. Drummond, and A. D. May, “Line broadening in the fundamental band of CO in CO–He and CO–Ar mixtures,” J. Mol. Spectrosc. 191, 258–264 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Starikov.

Additional information

Original Russian Text © V.I. Starikov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starikov, V.I. Resonance functions in the theory of collisional broadening of molecule spectral lines at low temperatures. Atmos Ocean Opt 30, 316–323 (2017). https://doi.org/10.1134/S102485601704011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601704011X

Keywords

Navigation