Skip to main content
Log in

Methodology for Determination of the Key Parameters of Conjugated Polymer Electrodeposition, Based on a Combination of Spectroelectrochemistry and Electrochemical Quartz Crystal Microbalance

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Methodology based on a combination of experimental data obtained by in situ methods of spectroelectrochemistry and electrochemical quartz crystal microbalance has been proposed for determination of the key parameters of the conjugated polymer deposition on the electrode surface via monomer electrooxidation. These parameters are: the current efficiency of the process, the charge spent per an oxidized monomer molecule, the number of monomer units inside the deposited film, and the average number of valence bonds per one monomer unit inside the film. Besides, the electrochemical quartz crystal microbalance method applied to the discharge process of the electropolymerized film allows determining the average charging (oxidation) degree of the monomer unit at the polymerization potential and the degree of the solvent participation in the polymer’s redox transitions. The applicability of the proposed approach has been demonstrated by example of magnesium polyporphine films obtained by oxidation of unsubstituted magnesium porphine on inert electrode in acetonitrile solution at a low potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Weidlich, C., Mangold, K.M., and Jüttner, K., EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes, Electrochim. Acta, 2005, vol. 50, no. 7–8, p. 1547.

    Article  CAS  Google Scholar 

  2. Xie, Q., Kuwabata, S., and Yoneyama, H., EQCM studies on polypyrrole in aqueous solutions, J. Electroanal. Chem., 1997, vol. 420, nos. 1–2, p. 219.

    Article  CAS  Google Scholar 

  3. Syritski, V., Öpik, A., and Forsen, O., Ion transport investigations of polypyrroles doped with different anions by EQCM and CER techniques, Electrochim. Acta, 2003, vol. 48, no. 10, p. 1409.

    Article  CAS  Google Scholar 

  4. Bruckenstein, S., Brzezinska, K., and Hillman, A.R., EQCM studies of polypyrrole films. 1. Exposure to aqueous sodium tosylate solutions under thermodynamically permselective conditions, Electrochim. Acta, 2000, vol. 45, no. 22–23, p. 3801.

    Article  CAS  Google Scholar 

  5. Mirmohseni, A., Milani, M., and Hassanzadeh, V., Ion exchange properties of polypyrrole studied by electrochemical quartz crystal microbalance (EQCM), Polym. Int., 1999, vol. 48, no. 9, p. 873.

    Article  CAS  Google Scholar 

  6. Bruckenstein, S., Brzezinska, K., and Hillman, A.R., EQCM studies of polypyrrole films. Part 2. Exposure to aqueous sodium tosylate solutions under thermodynamically non-permselective conditions, PCCP, 2000, vol. 2, no. 6, p. 1221.

    Article  CAS  Google Scholar 

  7. Borjas, R. and Buttry, D.A., EQCM studies of film growth, redox cycling, and charge trapping of n-doped and p-doped poly (thiophene), Chem. Mater., 1991, vol. 3, no. 5, p. 872.

    Article  CAS  Google Scholar 

  8. Keita, B., Mahmoud, A., and Nadjo, L., EQCM monitoring of charge transport processes in polyaniline films doped with 12-silicomolybdic heteropolyanion, J. Electroanal. Chem., 1995, vol. 386, no. 1–2, p. 245.

    Article  Google Scholar 

  9. Zhuzhel’skii, D.V., Krylova, V.A., Ivanov, V.D., and Malev, V.V., Mechanism of electrochemical reactions of polyaniline films formed under the conditions of cathodic oxygen reduction, Russ. J. Electrochem., 2009, vol. 45, p. 145.

    Article  CAS  Google Scholar 

  10. Widera, J., Skompska, M., and Jackowska, K., The influence of anions on formation, electroactivity, stability and morphology of poly (o-methoxyaniline) films–EQCM studies, Electrochim. Acta, 2001, vol. 46, no. 26–27, p. 4125.

    Article  CAS  Google Scholar 

  11. Henderson, M.J., Hillman, A.R., and Vieil, E., A combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD) study of a poly (o-toluidine) modified electrode in perchloric acid solution, J. Electroanal. Chem., 1998, vol. 454, nos. 1–2, p. 1.

    Article  CAS  Google Scholar 

  12. Schneider, O., Bund, A., Ispas, A., Borissenko, N., Zein El Abedin, S., and Endres, F., An EQCM study of the electropolymerization of benzene in an ionic liquid and ion exchange characteristics of the resulting polymer film, J. Phys. Chem. B, 2005, vol. 109, no. 15, p. 7159.

    Article  CAS  PubMed  Google Scholar 

  13. Efimov, I., Winkels, S., and Schultze, J.W., EQCM study of electropolymerization and redox cycling of 3,4-polyethylenedioxythiophene, J. Electroanal. Chem., 2001, vol. 499, no. 1, p. 169.

    Article  CAS  Google Scholar 

  14. Malev, V.V., Kondratiev, V.V., and Timonov, A.M., Polymer Modified Electrodes (in Russian), Saint Petersburg: Nestor-History, 2012. p. 201–206.

    Google Scholar 

  15. Eliseeva, S.N., Babkova, T.A., and Kondratiev, V.V., Mass tranfer of ions and solvent at redox processes in poly-3,4-ethylenedioxythiophene films, Russ. J. Electrochem., 2009, vol. 45, p. 152.

    Article  CAS  Google Scholar 

  16. Kondratiev, V.V., Levin, O.V., and Malev, V.V., Charge transfer and electrochemical reactions at electrodes modified with pristine and metal-containing films of conducting polymers, in Advances in Conducting Polymers Research, Michaelson, L., Ed., N.Y.: Nova Science Publishers Inc., 2014, p. 79.

    Google Scholar 

  17. Kurdakova, V.V., Antonov, N.G., Malev, V.V., and Kondrat’ev, V.V., Transport of ionic charge and solvent in poly (3-octylthiophene) films: An electrochemical quartz crystal microbalance study, Russ. J. Electrochem., 2006, vol. 42, p. 299.

    Article  CAS  Google Scholar 

  18. Kondratiev, V.V., Pogulaichenko, N.A., Hui, S., Tolstopjatova, E.G., and Malev, V.V., Electroless deposition of gold into poly-3,4-ethylenedioxythiophene films and their characterization performed in chloride-containing solutions, J. Solid State Electrochem., 2012, vol. 16, no. 3, p. 1291.

    Article  CAS  Google Scholar 

  19. Kondratiev, V.V., Babkova, T.A., and Tolstopjatova, E.G., PEDOT-supported Pd nanoparticles as a catalyst for hydrazine oxidation, J. Solid State Electrochem., 2013, vol. 17, no. 6, p. 1621.

    Article  CAS  Google Scholar 

  20. Kondratiev, V.V., Babkova, T.A., and Eliseeva, S.N., Structure and electrochemical properties of composite films based on poly-3, 4-ethylenedioxythiophene with metallic palladium inclusions, Russ. J. Electrochem., 2012, vol. 48, p. 205.

    Article  CAS  Google Scholar 

  21. Tolstopyatova, E.G., Pogulyaichenko, N.A., and Kondratiev, V.V., Synthesis and electrochemical properties of composite films based on poly-3,4-ethylenedioxythiophene with inclusions of silver particles, Russ. J. Electrochem., 2014, vol. 50, p. 510.

    Article  CAS  Google Scholar 

  22. Zhuzhelskii, D.V., Tolstopjatova, E.G., Volkov, A.I., Eliseeva, S.N., and Kondratiev, V.V., Microgravimetric study of electrochemical properties of PEDOT/WO3 composite films in diluted sulfuric acid, J. Solid State Electrochem., 2019, vol. 23, no. 12, p. 3275.

    Article  CAS  Google Scholar 

  23. Nizhegorodova, A.O., Eliseeva, S.N., Tolstopjatova, E.G., Láng, G.G., Zalka, D., Ujvári, M., and Kondratiev, V.V., EQCM study of redox properties of PEDOT/MnO2 composite films in aqueous electrolytes, J. Solid State Electrochem., 2018, vol. 22, no. 8, p. 2357.

    Article  CAS  Google Scholar 

  24. Kondratiev, V.V., Malev, V.V., and Eliseeva, S.N., Composite electrode materials based on conducting polymers loaded with metal nanostructures, Russ. Chem. Rev., 2016, vol. 85, p. 14.

    Article  CAS  Google Scholar 

  25. Jusys, Z., Massong, H., and Baltruschat, H., A New Approach for Simultaneous DEMS and EQCM: Electro-oxidation of Adsorbed CO on Pt and Pt–Ru, J. Electrochem. Soc., 1999, vol. 146, no. 3, p. 1093.

    Article  CAS  Google Scholar 

  26. Lyon, L.A. and Hupp, J.T., Energetics of semiconductor electrode/solution interfaces: EQCM evidence for charge-compensating cation adsorption and intercalation during accumulation layer formation in the titanium dioxide/acetonitrile system, J. Phys. Chem., 1995, vol. 99, no. 43, p. 15718.

    Article  CAS  Google Scholar 

  27. Levi, M.D., Levy, N., Sigalov, S., Salitra, G., Aurbach, D., and Maier, J., Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons, J. Amer. Chem. Soc., 2010, vol. 132, no. 38, p. 13220.

    Article  CAS  Google Scholar 

  28. Konev, D.V., Istakova, O.I., Sereda, O.A., Shamraeva, M.A., Devillers, C.H., and Vorotyntsev, M.A., In situ UV–visible spectroelectrochemistry in the course of oxidative monomer electrolysis, Electrochim. Acta, 2015, vol. 179, p. 315.

    Article  CAS  Google Scholar 

  29. Vorotyntsev, M.A., Konev, D.V., Devillers, C.H., Bezverkhyy, I., and Heintz, O., Magnesium(II) polyporphine: The first electron-conducting polymer with directly linked unsubstituted porphyrin units obtained by electrooxidation at a very low potential, Electrochim. Acta, 2010, vol. 55, no. 22, p. 6703.

    Article  CAS  Google Scholar 

  30. Vorotyntsev, M.A., Konev, D.V., Devillers, C.H., Bezverkhyy, I., and Heintz, O., Electroactive polymeric material with condensed structure on the basis of magnesium(II) polyporphine, Electrochim. Acta, 2011, vol. 56, no. 10, p. 3436.

    Article  CAS  Google Scholar 

  31. Konev, D.V., Devillers, C.H., Lizgina, K.V., Zyubina, T.S., Zyubin, A.S., Maiorova-Valkova, L.A., and Vorotyntsev, M.A., Synthesis of new electroactive polymers by ion-exchange replacement of Mg(II) by 2H+ or Zn(II) cations inside Mg(II) polyporphine film, with their subsequent electrochemical transformation to condensed-structure materials, Electrochim. Acta, 2014, vol. 122, p. 3.

    Article  CAS  Google Scholar 

  32. Konev, D.V., Lizgina, K.V., Khairullina, D.K., Shamraeva, M.A., Devillers, C.H., and Vorotyntsev, M.A., Preparation of cobalt polyporphine and its catalytic properties in oxygen electroreduction, Russ. J. Electrochem., 2016, vol. 52, p. 778.

  33. Rolle, S.D., Konev, D.V., Devillers, C.H., Lizgina, K.V., Lucas, D., Stern, C., Herbst, F., Heintz, O., and Vorotyntsev, M.A., Efficient synthesis of a new electroactive polymer of Co(II) porphine by in-situ replacement of Mg(II) inside Mg(II) polyporphine film, Electrochim. Acta, 2016, vol. 204, p. 276.

    Article  CAS  Google Scholar 

  34. Istakova, O.I., Konev, D.V., Zyubin, A.S., Devillers, C.H., and Vorotyntsev, M.A., Electrochemical route to Co(II) polyporphine, J. Solid State Electrochem., 2016. vol. 20, no. 11, p. 3189.

    Article  CAS  Google Scholar 

  35. Konev, D.V., Istakova, O.I., Dembinska, B., Skunik-Nuckowska, M., Devillers, C.H., Heintz, O., Kulesza, P.J., and Vorotyntsev, M.A., Electrocatalytic properties of manganese and cobalt polyporphine films toward oxygen reduction reaction, J. Electroanal. Chem., 2018, vol. 816, p. 83.

    Article  CAS  Google Scholar 

  36. Hillman, A.R., Daisley, S.J., and Bruckenstein, S., Ion and solvent transfers and trapping phenomena during n-doping of PEDOT films, Electrochim. Acta, 2008, vol. 53, no. 11, p. 3763.

    Article  CAS  Google Scholar 

  37. Hillman, A.R., Ryder, K.S., Zaleski, C.J., Fullarton, C., and Smith, E.L., Ion transfer mechanisms accompanying p-doping of poly (3,4-ethylenedioxythiophene) films in deep eutectic solvents, Z. Phys. Chem., 2012, vol. 226, no. 9–10, p. 1049.

    Article  CAS  Google Scholar 

  38. Vorotyntsev, M.A., Vieil, E., and Heinze, J., Ionic exchange of the polypyrrole film with the PC lithium perchlorate solution during the charging process, Electrochim. Acta, 1996, vol. 41, no. 11–12, p. 1913.

    Article  CAS  Google Scholar 

  39. Levi, M.D., Lopez, C., Vieil, E., and Vorotyntsev, M.A., Influence of ionic size on the mechanism of electrochemical doping of polypyrrole films studied by cyclic voltammetry, Electrochim. Acta, 1997, vol. 42, no. 5, p. 757.

    Article  CAS  Google Scholar 

  40. Vorotyntsev, M.A., Vieil, E., and Heinze, J., Charging process in polypyrrole films: effect of ion association, J. Electroanal. Chem., 1998, vol. 450, no. 1, p. 121.

    Article  CAS  Google Scholar 

  41. Konev, D.V., Devillers, C.H., Lizgina, K.V., Baulin, V.E., and Vorotyntsev, M.A., Electropolymerization of non-substituted Mg(II) porphine: Effects of proton acceptor addition, J. Electroanal. Chem., 2015, vol. 737, p. 235.

    Article  CAS  Google Scholar 

  42. Heinze, J.R. and Bilger, R., Ion movements during redox switching of polypyrrole–experiment and simulation, Ber. Bunsenges. Phys. Chem., 1993, vol. 97, p. 502.

    Article  CAS  Google Scholar 

  43. Skompska, M., Vorotyntsev, M.A., Goux, J., Moise, C., Heinz, O., Cohen, Y.S., Levi, M.D., Gofer, Y., Salitra, G., and Aurbach, D., Mechanism of redox transformation of titanocene dichloride centers immobilized inside a polypyrrole matrix–EQCM and XPS evidences, Electrochim. Acta, 2005, vol. 50, p. 1635.

    Article  CAS  Google Scholar 

  44. Vorotyntsev, M.A., Zinovyeva, V.A., and Konev, D.V., Mechanisms of electropolymerization and redox activity: fundamental aspects, in Electropolymerization: concepts, materials and applications, Cosnier, S. and Karyakin, A., Eds., Weinheim: Wiley-VCH, 2010, p. 27.

    Google Scholar 

Download references

Funding

The reported study was funded by Russian Foundation for Basic Research according to the research project no. 18-33-01303). The work was carried out in part according to the State Contract (the state registration number АААА-А19-119061890019-5, topic 0089-2019-0007) using resources of the Center of national technology initiatives of the Institute for Problems of Chemical Physics, RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. I. Istakova, D. V. Konev or M. A. Vorotyntsev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istakova, O.I., Konev, D.V., Goncharova, O.A. et al. Methodology for Determination of the Key Parameters of Conjugated Polymer Electrodeposition, Based on a Combination of Spectroelectrochemistry and Electrochemical Quartz Crystal Microbalance. Russ J Electrochem 57, 264–272 (2021). https://doi.org/10.1134/S1023193521030034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521030034

Keywords:

Navigation