Skip to main content
Log in

Electrosynthesis of Mono- and Disulfides Based on C5–C8 Cycloalkanes, Hydrogen Sulfide, and Isomeric Dibutyl Disulfides

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A method of synthesis of organic mono-, di-, and polysulfides based on electrochemical reactions of unsubstituted and alkyl–substituted cycloalkanes C5–C8 with di(n-butyl)disulfide (di(tert-butyl)disulfide) and hydrogen sulfide is developed. Three–component electrosynthesis is carried out in methylene chloride under atmospheric pressure, at the room temperature under the conditions of anodic H2S activation to a cation radical fragmented to a proton and a thiyl radical. The suggested approach with application of oxidative conversion initiation allows obtaining asymmetric mono-, disulfides and symmetric disulfides. The yield of biologically active organic sulfur derivatives depends on the electrosynthesis duration, structure of isomeric dibutyl sulfides, alicycle size and saturation degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Feng, M., Tang, B., and Liang, S., Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry, Curr. Top. Med. Chem., 2016, vol. 16, no 11, p. 1200. https://doi.org/10.2174/1568026615666150915111741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Parcell, S., Sulfur in human nutrition and applications in medicine, Altern Med Rev., 2002, vol. 7, no. 1, p. 22.

    PubMed  Google Scholar 

  3. Hayashida, R., Kondo, K., Morita, S., Unno, K., Shintani, S., Shimizu, Y., Calvert, J.W., Shibata, R., and Murohara, T., Diallyl trisulfide augments ischemia-induced angiogenesis via an endothelial nitric oxide synthase-dependent mechanism, Circulation J., 2017, vol. 81, no. 6, p. 870. https://doi.org/10.1253/circj.CJ-16-1097

    Article  CAS  Google Scholar 

  4. Marwan, S. and Al-Nimer, M., Hydrogen sulfide donors or related derivatives are the future medicines of renal diseases, Egypt. Pharmaceut. J., 2017, vol. 16, no. 1, p. 1. https://doi.org/10.4103/1687-4315.205827

    Article  Google Scholar 

  5. St-Gelais A., Legault J., Mshvildadze V., and Pichette A., Dirchromones: Cytotoxic Organic Sulfur Compounds Isolated from Dirca palustris, J. Nat. Prod., 2015, vol. 78, no. 8, p. 1904. https://doi.org/10.1021/acs.jnatprod.5b00227

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, X., Sulfur atom transfer (SAT) reaction, Phosphorus, Sulfur Silicon Relat. Elem., 2017, vol. 192, no. 2, p. 169. https://doi.org/10.1080/10426507.2016.1250762

    Article  CAS  Google Scholar 

  7. Gu, X. and Zhu, Y.Z., Therapeutic applications of organosulfur compounds as novel hydrogen sulfide donors and/or mediators, Expert. Rev. Clin. Pharmacol., 2011, vol. 4, no. 1, p. 123. https://doi.org/10.1586/ecp.10.129

    Article  CAS  PubMed  Google Scholar 

  8. Cerella, C., Dicato, M., Jacob, C., and Diederich M., Chemical properties and mechanisms determining the anti-cancer action of garlic-derived organic sulfur compounds, Anti-Cancer Agents Med. Chem., 2011, V. 11, no. 3, p. 267. https://doi.org/10.2174/187152011795347522

    Article  CAS  Google Scholar 

  9. Pluth, M.D., Bailey, T.S., Hammers, M.D., Hartle, M.D., Henthorn, H.A., and Steiger, A.K., Natural Products Containing Hydrogen Sulfide Releasing Moieties, Synlett, 2015, vol. 26, no. 19, p. 2633. https://doi.org/10.1055/s-0035-1560638

    Article  CAS  Google Scholar 

  10. Hosgood, S.A. and Nicholson, M.L., Hydrogen sulphide ameliorates ischaemia-reperfusion injury in an experimental model of non-heart-beating donor kidney transplantation, British J. Surgery, 2010, vol. 97, no. 2, p. 202. https://doi.org/10.1002/bjs.6856

    Article  CAS  Google Scholar 

  11. Misak, A., Grman, M., Bacova, Z.b, Rezuchova, I., Hudecova, S., Ondriasova, E., Krizanova, O., Brezova, V., Chovanec, M., and Ondrias, K., Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2, Nitric Oxide, 2018, vol. 76, no. 1, p. 136. https://doi.org/10.1016/j.niox.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  12. Kang, J., Xu, S., Radford, M.N., Zhang, W., Kelly, S.S., Day, J.J., and Xian, M., O→S Relay Deprotection: A General Approach to Controllable Donors of Reactive Sulfur Species, Angew. Chem. Int.Ed., 2018, vol. 57, no. 20, p. 5893. https://doi.org/10.1002/anie.201802845

    Article  CAS  Google Scholar 

  13. Kovácsa, S. and Novák, S., Oxidoreductive coupling of thiols with aryl halides catalyzed by copper on iron, Org. Biomol. Chem., 2011, vol. 9, p. 711. https://doi.org/10.1039/c0ob00397b

    Article  CAS  Google Scholar 

  14. Singh, G., Nakade, P.G., Mishra, P., Jha, P., Sen, S., and Mondal, U., Kinetic investigation on liquid–liquid–solid phase transfer catalyzed synthesis of dibenzyl disulfide with H2S-laden monoethanolamine, J. Mol. Catal. A: Chem., 2016, vol. 411, p. 78. https://doi.org/10.1016/j.molcata.2015.10.013

    Article  CAS  Google Scholar 

  15. Yu, B., Diao, Z.-F., Liu, A.-H., Han, X., Li, B., He, L.-N., and Liu, X.-M., Selective Oxidation of Sulfides to Sulfoxides with Tert-Butylnitrite as an Alternative Oxidant, Curr. Org. Synth., 2014, vol. 11, no. 1, p. 156. https://doi.org/10.2174/1570179411999140304142430

    Article  CAS  Google Scholar 

  16. Van, L.K., Hamilton, C.J., and Messens, J., Low-molecular-weight thiols in thiol-disulfide exchange, Antioxid. Redox Signaling, 2013, vol. 18, no. 13, p. 1642. https://doi.org/10.1089/ars.2012.4964

    Article  CAS  Google Scholar 

  17. Guo, S., He, W., Xiang, J., and Yuan, Ya., Ruthenium-catalyzed direct thiolation of alkanes and ethers using arylsulfonyl chlorides as a sulfur source, Tetrahedron Lett., 2015, vol. 56, no. 17, p. 2159. https://doi.org/10.1016/j.tetlet.2015.01.068

    Article  CAS  Google Scholar 

  18. Zhao, J., Fang, H., Song, R., Zhou, J., Han, J., and Pan, Y., Metal-free oxidative C(sp3)–H bond functionalization of alkanes and alkylation-initiated radical 1,2-aryl migration in α,α-diaryl allylic alcohols, Chem. Commun., 2015, vol. 51, no. 3, p. 599. https://doi.org/10.1039/C4CC07654K

    Article  CAS  Google Scholar 

  19. Guo, S., He, W., Xiang, J., and Yuan, Ya., Palladium-catalyzed thiolation of alkanes and ethers with arylsulfonyl hydrazides, Chem. Commun., 2014, vol. 50, p. 8578. https://doi.org/10.1039/C4CC02876G

    Article  CAS  Google Scholar 

  20. Saravanan, P. and Anbarasan, P., Palladium Catalyzed Aryl(alkyl)thiolation of Unactivated Arenes, Org. Lett., 2014, vol. 16, no. 3, p. 848. https://doi.org/10.1021/ol4036209

    Article  CAS  PubMed  Google Scholar 

  21. Mishra, P., Kumari, S., and Sen, S., Kinetic modeling on ionic liquid mediated bi-liquid phase transfer catalyzed synthesis of bis-(2-phenylethyl) sulfide with H2S-rich methyldiethanolamine, J. Mol. Liq., 2018, vol. 271, p. 580. https://doi.org/10.1016/j.molliq.2018.09.038

    Article  CAS  Google Scholar 

  22. Moiseev, I.I., “Green Chemistry”: the trajectory of development, Russ. Chem. Rev., 2013, vol. 82, no. 7, p. 616. https://doi.org/10.1070/RC2013v082n07ABEH004393

    Article  CAS  Google Scholar 

  23. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., and Abdulaeva, V.F., Anodic activation of hydrogen sulfide in reaction with cyclopentane, Russ. J. General Chem., 2015, vol. 85, no. 4, p. 998. https://doi.org/10.1134/S1070363215040416

    Article  CAS  Google Scholar 

  24. Shinkar, E.V., Shvetsova, A.V., Sediki D.B., and Berberova, N.T., Redox activation of hydrogen sulfide in the reaction with cycloheptane, Russ. J. Electrochem., 2015, vol. 51, no. 11, p. 1046. https://doi.org/10.1134/S1023193515110178

    Article  CAS  Google Scholar 

  25. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., Shvetsova, A.V., and Sediki, D.B., Electrosynthesis of biologically active dicycloalkyl di- and trisulfides involving an H2S–S8 redox system, Russ. Chem. Bull., 2018, vol. 67, no. 1, p. 108. https://doi.org/10.1007/s11172-018-2044-4

    Article  CAS  Google Scholar 

  26. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., and Pashchenko, K.P., Redox-mediators of hydrogen sulfide oxidation in reactions with cycloalkanes, Dokl. Chem., 2015, vol. 465, no. 2, p. 295. https://doi.org/10.1134/S0012500815120058

    Article  CAS  Google Scholar 

  27. Berberova, N.T., Shinkar’, E.V., Smolyaninov, I.V., Kuz’min, V.V., Shvetsova, A.V., and Sediki, D.B., 3,6-Di-tert-butyl-o-seminquinolate complexes Cr(III), In(III) as redox-mediators of hydrogen sulfide oxidation in reactions with cycloalkanes, Russ. J. Coord. Chem., 2017, vol. 43, no. 9, p. 578. https://doi.org/10.1134/S107032841707003X

    Article  CAS  Google Scholar 

  28. Shinkar’, E.V., Kudryavtsev, D.A., Pashchenko, K.P., Berberova, N.T., and Okhlobystina, A.V., Thiolation of cycloalkenes C5, C6 by redox-activation of hydrogen sulfide, Mendeleev Commun., 2017, vol. 27, p. 1, https://doi.org/10.1016/j.mencom.2017.03.025

    Article  CAS  Google Scholar 

  29. Berberova, N.T., Shinkar, Ye.V., Smolyaninov, I.V., and Okhlobystina, A.V., Serovodorod I alkantioly v sinteze biologicheski aktivnykh organicheskikh soedinenii sery (Hydrogen sulfide and alkanethiols in the synthesis of biologically active organic sulfur compounds), Rostov-on-Don: Southern Scientific Center of RAS, 2016.

  30. Letichevskaya, N.N., Shinkar’, E.V., Berberova, N.T., and Okhlobystin, O.Yu., Radical Cation of Hydrogen Sulfide as a Superacid, Russ. J. General Chem., 1996, vol. 66, no. 11, p. 1739.

    Google Scholar 

  31. Gordon, A.J. and Ford, R.A., The Chemist’s Companion, New York: Wiley Interscience, 1972.

    Google Scholar 

  32. Organic Electrochemistry, Baizer, M.M. and Lund, H., Eds., New York, Basel: Marcel Dekker Inc., 1983.

    Google Scholar 

  33. Berberova, N.T. and Shinkar’, E.V., The radical cation of hydrogen sulfide and related organic reactions, Russ. Chem. Bull., 2000, vol. 49, no. 7, p. 1178. https://doi.org/10.1007/BF02495758

    Article  CAS  Google Scholar 

  34. Berberova, N.T. and Shinkar, E.V., Smolyaninov, I.V., and Okhlobystin, A.O., Vovlechenie serovodoroda, tiolov i polisul’fanov v sintez organicheskikh soedinenii sery (The involvement of hydrogen sulfide, thiols and polysulfans in the synthesis of organic sulfur compounds), Rostov-on-Don: Southern Scientific Center of RAS, 2009.

  35. Organic Electrochemistry, Lund, H. and Hammerich, O., Eds., New York: Marcel Dekker Inc., 4th ed., 2001, p. 621.

    Google Scholar 

Download references

Funding

The study is supported by the Russian Foundation for Basic Research (project no. 17-13-01168).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Shinkar’ or N. T. Berberova.

Ethics declarations

The authors declare the absence of any conflict of interest.

Additional information

Translated by M. Ehrenburg

Published on the basis of materials of the XIX All-Russian Conference “Electrochemistry of Organic Compounds” (EKHOS-2018) (with international participation), Novocherkassk, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinkar’, E.V., Shvetsova, A.V., Okhlobystin, A.O. et al. Electrosynthesis of Mono- and Disulfides Based on C5–C8 Cycloalkanes, Hydrogen Sulfide, and Isomeric Dibutyl Disulfides. Russ J Electrochem 56, 285–292 (2020). https://doi.org/10.1134/S1023193520040138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520040138

Keywords:

Navigation