Skip to main content
Log in

Mixed Alkaline Effect in Antimony-Based Glasses

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The mixed alkaline effect (MAE) is a well-known anomaly in glasses. It results in a non-linear response of various physical properties on mixing of alkali ions in the glass. In this paper, the MAE is studied in antimony oxides based glasses 60Sb2O3–20MoO3–(20 – x)Li2O–xNa2O and 60Sb2O3–20MoO3–(20 – x)Li2O–xK2O (in mol %). The influence of Na/Li and K/Li ratios on ionic AC and DC conductivities, and Tg is presented. Dependences of Tg on x, in both types of glasses, have typical minima at x ≅ 10, it means that the minima take place at approximately equal concentrations of both mixed alkali ions. The minimum for K2O containing glasses is deeper, probably due to a larger difference between ionic radii of K+ and Li+ ions. In glasses with one type of alkali ion, Tg decreases in the sequence: K → Li → Na. Temperature dependences of the DC conductivity obey Arrhenius-like relation. The conductivity steeply decreases with increasing Na or K content due to the larger ionic radius of both ions comparing to that of Li ions. At the same time, the conduction activation energy goes through a flat maximum at x = 15 (1.21 eV) for Na2O modifier and at x = 5 (1.16 eV), for K2O modifier. In antimony oxide based glasses, Li+, Na+, and K+ ions are modifiers and dominant charge-carriers. Due to larger ionic radii of Na+, and K+, the decrease of the conductivity after their addition is reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Day, D.E., J. Non-Cryst. Solids, 1976, vol. 21, pp. 343–372.

    Article  CAS  Google Scholar 

  2. Isard, J.O., J. Non-Cryst. Solids, 1969, vol. 1, pp. 235–261.

    Article  CAS  Google Scholar 

  3. LaCourse, W.C. and Cormack, A.N., Structural influences on the mixed alkali effect in glasses, Trans. Am. Crystallogr. Assoc., 1991, vol. 27, pp. 211–224.

    CAS  Google Scholar 

  4. Ahmed, A.A. and Abbas, A.F., J. Non-Cryst. Solids, 1986, vol. 80, pp. 371–378.

    Article  CAS  Google Scholar 

  5. Samee, M.A., Ahmmad, S.K., Taqiullah, S.Md., Edukondalu, A., Bale, S., and Rahman, S., Mixed alkali effect in (40 – x)K2O–xLi2O–10Na2O–50B2O3 glasses-physical and optical absorption studies, Int. J. Modern Phys.: Conf. Ser., 2013, vol. 22, pp. 261–267. https://doi.org/10.1142/S2010194513010210

    Article  CAS  Google Scholar 

  6. Kjeldsen, J., Smedskjaer, M.M., Mauro, J.C., and Yue, Y., J. Non-Cryst. Solids, 2014, vol. 406, pp. 22–26.

    Article  CAS  Google Scholar 

  7. Megahed, A.A., Phys. Chem. Glasses, 1999, vol. 40, pp. 130–134.

    CAS  Google Scholar 

  8. Shelby, J.E., Introduction to Glass Science and Technology, Cambridge: Royal Society of Chemistry, 1997.

    Google Scholar 

  9. Ouannes, K., Soltani, M.T., Poulain, M., Boulon, G., Alombert-Goget, G., Guyot, Y., Pillonnet, A., and Lebbou, K., J. Alloys Compd., 2014, vol. 603, pp. 132–135.

    Article  CAS  Google Scholar 

  10. Zavadil, J., Ivanova, Z.G., Kostka, P., Hamzaoui, M., and Soltani, M.T., J. Alloys Compd., 2014, vol. 611, pp. 111–116.

    Article  CAS  Google Scholar 

  11. Soltani, M.T., Hamzaoui, M., Houhou, S., Touiri, H., Bediar, L., Ghemri, A.M., and Petkova, P., Acta Phys. Polonica A, 2013, vol. 123, pp. 227–229.

    Article  CAS  Google Scholar 

  12. Hamzaoui, M., Azri, S., Soltani, M.T., Lebullenger, R., and Poulain, M., Phys. Scr. T, 2013, vol. 157, p. 014029.

    Article  CAS  Google Scholar 

  13. Baazouzi, M., Soltani, M.T., Hamzaoui, M., Poulain, M., and Troles, J., Opt. Mater., 2013, vol. 36, pp. 500–504.

    Article  CAS  Google Scholar 

  14. Soltani, M.T., Boutarfaia, A., Makhloufi, R., and Poulain, M., J. Phys. Chem. Solids, 2003, vol. 64, pp. 2307–2312.

    Article  CAS  Google Scholar 

  15. de Araujo, R.E., de Araujo, C.B., Poirier, G., Poulain, M., and Messaddeq, Y., Appl. Phys. Lett., 2002, vol. 81, pp. 4694–4696.

    Article  CAS  Google Scholar 

  16. Hamzaoui, M., Soltani, M.T., Baazouzi, M., Tioua, B., Ivanova, Z.G., Lebullenger, R., Poulain, M., and Zavadil, J., Phys. Status Solidi B, 2012, vol. 249, pp. 2213–2221.

    Article  CAS  Google Scholar 

  17. Bosak, O., Kostka, P., Minarik, S., Trnovcova, V., Podolinciakova, J., and Zavadil, J., J. Non-Cryst. Solids, 2013, vol. 377, pp. 74–78.

    Article  CAS  Google Scholar 

  18. Legouera, M., Rahal, F., Kostka, P., and Poulain, M., Ann. Chim. Sci. Materiaux, 2009, vol. 34, pp. 249–266.

    Article  CAS  Google Scholar 

  19. Kostka, P., Lezal, D., Poulain, M., Pedlikova, J., and Novotna, M., Solid State Phenom., 2003, vols. 90–91, pp. 235–240.

    Article  Google Scholar 

  20. Minelly, J. and Ellison, A., Opt. Fiber Technol., 2002, vol. 8, pp. 123–138.

    Article  CAS  Google Scholar 

  21. Kubliha, M., Investigating Structural Changes and Defects of Non-Metallic Materials via Eectrical Methods, 1st ed., Dresden : Forschungszentrum Dresden-Rossendorf, 2009.

    Google Scholar 

  22. Kalužný, J., Kubliha, M., Labaš, V., Poulain, M., and Taibi, Y., J. Non-Cryst. Solids, 2009, vol. 355, pp. 2031–2034.

    Article  CAS  Google Scholar 

  23. Kubliha, M., Soltani, M.T., Trnovcová, V., Legouera, M., Labaš, V., Kostka, P., Le Coq, D., and Hamzaoui, M., J. Non-Cryst. Solids, 2015, vol. 428, pp. 42–48.

    Article  CAS  Google Scholar 

  24. Labaš, V., Poulain, M., Kubliha, M., Trnovcová, V., and Goumeidane, F., J. Non-Cryst. Solids, 2013, vol. 377, pp. 66–69.

    Article  CAS  Google Scholar 

  25. Papathanassiou, A.N., J. Phys. Chem. Solids, 2005, vol. 66, pp. 1849–1850.

    Article  CAS  Google Scholar 

  26. Bunker, B.C., Arnold, G.W., Beauchamp, E.K., and Day, D.E., J. Non-Cryst. Solids, 1983, vol. 58, pp. 295–322.

    Article  CAS  Google Scholar 

  27. Bunde, A., Ingram, M.D., and Maass, P., J. Non-Cryst. Solids, 1994, vols. 172–174, pp. 1222–1236.

    Article  Google Scholar 

  28. Bunde, A., Ingram, M.D., Maass, P., and Ngai, K.L., J. Non-Cryst. Solids, 1991, vols. 131–133, pp. 1109–1112.

    Article  Google Scholar 

  29. Balasubramanian, S. and Rao, K.J., J. Non-Cryst. Solids, 1995, vol. 181, pp. 157–174.

    Article  CAS  Google Scholar 

  30. Jonscher, A.K., Nature, 1977, vol. 267, p. 673.

    Article  CAS  Google Scholar 

  31. Cramer, C., Brunklaus, S., Ratai, E., and Gao, Y., Phys. Rev. Lett., 2003, vol. 91, p. 266601.

    Article  CAS  PubMed  Google Scholar 

  32. Chen, R.H., Yang, R.Y., and Stern, S.C., J. Phys. Chem. Solids, 2002, vol. 63, p. 2069.

    Article  CAS  Google Scholar 

  33. Louati, B., Gargouri, M., Guidara, K., and Mhiri, T., J. Phys. Chem. Solids, 2005, vol. 66, pp. 762–765.

    Article  CAS  Google Scholar 

  34. Papathanassiou, A.N., J. Non-Cryst. Solids, 2006, vol. 52, p. 5444.

    Article  CAS  Google Scholar 

  35. Papathanassiou, A.N., Sakellis, I., and Grammatikakis, J., Appl. Phys. Lett., 2007, vol. 91, p. 122911.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bosak.

Additional information

The article is published in the original.

Based on the paper presented at the XIV Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka (Russia), September 9–13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubliha, M., Maache, D., Bosak, O. et al. Mixed Alkaline Effect in Antimony-Based Glasses. Russ J Electrochem 55, 510–516 (2019). https://doi.org/10.1134/S1023193519060119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519060119

Keywords:

Navigation