Skip to main content
Log in

Hydrogen bonding association in the electroreduced intermediates of benzoquinones and naphthoquinones

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Keeping in view the importance of chemical and biological functions of quinone based couples; two different series of quinones, namely benzoquinones and naphthoquinones, are investigated electrochemically. Five compounds of each series are studied systematically in dichloromethane, acetonitrile, and propylene carbonate and from there the half-wave potentials of first and second reductions are obtained through cyclicoltammetry measurements. Four different alcohols are used with increasing concentrations as hydrogen bond donors on the basis of their increasing acidity. The hydrogen-bonding power is analyzed from the positive shifts in both the waves with increasing concentrations of alcohols. The quantitative comparison is made while calculating the thermodynamic association constants and number of alcohol molecules bonded to both anion and dianion of quinones. The qualitative behavior and quantitative data both indicate the quinone-alcohol interaction as hydrogen bonding and the strength of hydrogen bond is dependant upon the nature of species involved in this couple. From the cyclic voltammetric data the relative effects of hydroxylic additives and different substituted quinones on equilibrium constant are also observed. Solvent effect is rationalized in favor of hydrogen bonding in terms of solvent polarity parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chambers, J.Q., Patai, S., and Rappaport, Z., The Chemistry of Quinonoid Compounds, New York: Wiley, 1974, p. 737.

    Google Scholar 

  2. Okamura, M.Y. and Feher, G., Annu. Rev. Biochem., 1992, vol. 61, p. 881.

    Article  Google Scholar 

  3. Klinman, J.P. and David, M., Annu. Rev. Biochem., 1994, vol. 63, p. 299.

    Article  CAS  Google Scholar 

  4. Ding, H., Moser, C.C., and Robertson, D.E., Biochemistry, 1995, vol. 34, p. 15979.

    Article  CAS  Google Scholar 

  5. Swallow, A.J. and Trumpower, B.L., Functions of Quinones in Energy Conserving Systems, New York: Academic, 1982, p. 66.

    Google Scholar 

  6. Chambers, J.Q., Patai, S., and Rappaport, Z., The Chemistry of Quinonoid Compounds, New York: Wiley, 1988, p. 719.

    Google Scholar 

  7. Uno, B., Okumura, N., Goto, M., and Kano, K.J., J. Org. Chem., 2000, vol. 65.

  8. Kolthoff, I.M. and Lingane, J.J., Polarography, New York: Interscience, 1952, vol. I, chs. XIV, XV; vol. II, ch. XI.

    Google Scholar 

  9. Peover, M.E. and Bard, A.J., Electroanalytical Chemistry, New York: Marcel Dekker, 1967, p. 1.

    Google Scholar 

  10. Peover, M.E., J. Chem. Soc., 1962, p. 4540.

  11. Zuman, P., Substituent Effects on Organic Polarography, New York: Plenum, 1967.

    Google Scholar 

  12. Russel, C. and Jaenicke, J., J. Electroanal. Chem., 1986, vol. 199, p. 139.

    Article  Google Scholar 

  13. Laviron, E., J. Electroanal. Chem., 1986, vol. 208, p. 357.

    Article  CAS  Google Scholar 

  14. Gunner, M.R., Curr. Top. Bioenergetics, 1991, vol. 16, p. 319.

    CAS  Google Scholar 

  15. Crofts, A.R. and Wraight, C.A., Biochim. Biophys. Acta, 1983, vol. 726, p. 149.

    CAS  Google Scholar 

  16. Huber, R., Angew. Chem., Int. Ed. Engl., 1989, vol. 28, p. 848.

    Article  Google Scholar 

  17. Song, K. and Jeon, S., Bull. Korean. Chem. Soc., 2003, vol. 24, p. 153.

    Article  CAS  Google Scholar 

  18. Ge, Y., Miller, L., Ouimet, T., and Smith, D.K., J. Org. Chem., 2000, vol. 65, p. 8831.

    Article  CAS  Google Scholar 

  19. Uno, B., Kawabata, A., and Kano, K., Chem. Lett., 1992, p. 1017.

  20. Zhao, X., Imahori, H., and Zhan, J., J. Phys. Chem. A, 1997, vol. 101, p. 622.

    Article  CAS  Google Scholar 

  21. Okumura, N. and Uno, B., Bull. Chem. Soc. Jpn., 1999, vol. 72, p. 1213.

    Article  CAS  Google Scholar 

  22. Malley, P.J.O., J. Phys. Chem. A, 1997, vol. 101, p. 9813.

    Article  Google Scholar 

  23. Salas, M., Gomez, M., Gonzalez, F.J., and Gordillo, B., J. Electroanal. Chem., 2003, vol. 543, p. 73.

    Article  CAS  Google Scholar 

  24. Gomez, M., Gonzalez, I., and Gonzalez, F.J., Electrochem. Commun., 2003, vol. 5, p. 12.

    Article  CAS  Google Scholar 

  25. Macias-Ruvalcaba, N.A., Gonzalez, I., and Martinez, M.A., J. Electrochem. Soc., 2004, vol. 151, p. E110.

    Article  CAS  Google Scholar 

  26. Bautisa-Martinez, J.A., Gonzalez, I., and Aguilar-Martinez, M., J. Electroanal. Chem., 2004, vol. 573, p. 289.

    Article  CAS  Google Scholar 

  27. Gomez,, M., Gonzalez, F.J., and Gonzalez, I., Electroanalysis, 2003, vol. 15, p. 635.

    Article  CAS  Google Scholar 

  28. Gomez, M., Gonzalez, F.J., and Gonzalez, I., J. Electroanal. Chem., 2005, vol. 578, p. 193.

    Article  CAS  Google Scholar 

  29. Lister, S.G., Reynolds, C.A., and Richards, W.G., Int. J. Quantum Chem., 1992, vol. 41, p. 293.

    Article  CAS  Google Scholar 

  30. Reynolds, C.A., King, P.M., and Richards, W.G., J. Chem. Soc., Chem. Commun., 1998, p. 1434.

  31. Cavalieri, E.L. and Rogan, E.G., Ann. N. Acad. Sci., 2002, vol. 959, p. 341.

    Article  CAS  Google Scholar 

  32. Gpta, N. and Linschitz, H., J. Am. Chem. Soc., 1997, vol. 119, p. 6384.

    Article  Google Scholar 

  33. Heffner, J.E., Raber, J.C., Moe, O.A., and Wigal, C.T., J. Chem. Educ., 1998, vol. 75, p. 365.

    Article  CAS  Google Scholar 

  34. Trumpower, B.L., J. Biol. Chem., 1990, vol. 265, p. 11409.

    CAS  Google Scholar 

  35. Nagaoka, T., Okazaki, S., and Fujinaga, T., J. Electroanal. Chem., 1982, vol. 133, p. 89.

    Article  CAS  Google Scholar 

  36. Lima, N.M.F., Correia, C.S., and Ferraz, P.A.I., J. Braz Chem. Soc., 2002, vol. 13.

  37. Jaworski, J.S., Lesniewska, E., and Kalinowski, M.K., J. Electroanal. Chem., 1979, vol. 105, p. 329.

    Article  CAS  Google Scholar 

  38. Furniss, B.S., Hannaford, A.J., and Smith, P.W.G., VOGEL’s Textbook of Practical Organic Chemistry, New York: Wiley, 1989, p. 395.

    Google Scholar 

  39. Saski, K., Kashimura, T., and Ohura, M., J. Electrochem. Soc., 1990, vol. 137, p. 2437.

    Article  Google Scholar 

  40. Ferraz, P.A.L., de Abreu, F.C., and Pinto, A.V., J. Electroanal. Chem., vol. 507, p. 275.

  41. Kasende, O.E., Nagla, K.K., and Kayembe, S., J. Mol. Struct., 1995, vol. 354, p. 147.

    Article  CAS  Google Scholar 

  42. Gomez, M., Gonzalez, F.J., and Gonzalez, I., J. Electrochem. Soc., 2003, vol. 150, p. E527.

    Article  CAS  Google Scholar 

  43. Peover, M.E. and Davis, J.D., J. Electroanal. Chem., 1963, vol. 6, p. 46.

    Article  CAS  Google Scholar 

  44. Reichard, C., Solvents and Solvent Effect in Organic Chemistry, New York: VCH, 1988, p. 370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ahmed.

Additional information

Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 7, pp. 851–860.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, S., Khan, A.Y., Qureshi, R. et al. Hydrogen bonding association in the electroreduced intermediates of benzoquinones and naphthoquinones. Russ J Electrochem 43, 811–819 (2007). https://doi.org/10.1134/S1023193507070117

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193507070117

Key words

Navigation