Skip to main content
Log in

ADAMTS1 Is Differentially Expressed in Human Lymphocytes with Various Frequencies of Endogenous γH2AX Foci and Radiation-Induced Micronuclei

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The level of spontaneous and radiation-induced DNA damage varies depending on genetic and environmental factors in human somatic cells. This variation may be associated with transcriptional changes in cells, allowing the use of gene expression levels as markers of individual sensitivity to mutagenic effects. This study aimed to identify and characterize differentially expressed genes (DEGs) in lymphocytes of individuals with various frequencies of endogenous γH2AX foci and radiation-induced micronuclei (n = 37). The low-focus group was characterized by 0.18 ± 0.02 endogenous γH2AX foci per cell and a 155.78 ± 47.19‰ radiation-induced micronucleus frequency. The high-focus group was characterized by 0.49 ± 0.07 foci/cell and a 78.44 ± 33.21‰ micronucleus frequency. Seven DEGs (ENST00000424415, CRNDE, ADAMTS1, ENST00000424084, EIF2A, PNPLA5, and FRG2C) (FDR < 0.2) were identified by gene expression analysis with microarrays. As the extracellular matrix metalloproteinase, ADAMTS1 is able to activate the latent form of TGFβ, and TGFβ is involved in radiation-induced cellular response; the effects of ADAMTS1 knockout and overexpression on the gene expression profile were further validated in adherent HeLa cells. Twenty-nine of 160 identified DEGs are involved in apoptosis, DNA DSB repair, G2/M cell cycle transition, and the TGFβ signaling pathway. Thus, ADAMTS1 may be useful as a potential target for antitumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Sokolov, M. and Neumann, R., Global gene expression alterations as a crucial constituent of human cell response to low doses of ionizing radiation exposure, Int. J. Mol. Sci., 2015, vol. 17, no. 1, p. 55. https://doi.org/10.3390/ijms17010055

    Article  CAS  PubMed Central  Google Scholar 

  2. Foray, N., Bourguignon, M., and Hamada, N., Individual response to ionizing radiation, Mutat. Res., Rev. Mutat. Res., 2016, vol. 770, pp. 369—386. https://doi.org/10.1016/j.mrrev.2016.09.001

    Article  CAS  Google Scholar 

  3. Rajaraman, P., Hauptmann, M., Bouffler, S., and Wojcik, A., Human individual radiation sensitivity and prospects for prediction, Ann. ICRP, 2018, vol. 47, nos. 3—4, pp. 126—141. https://doi.org/10.1177/0146645318764091

    Article  CAS  PubMed  Google Scholar 

  4. Andreassen, C.N., Schack, L.M.H., Laursen, L.V., and Alsner, J., Radiogenomics—current status, challenges and future directions, Cancer Lett., 2016, vol. 382, no. 1, pp. 127—136. https://doi.org/10.1016/j.canlet.2016.01.035

    Article  CAS  PubMed  Google Scholar 

  5. Wang, T.M., Shen, G.P., Chen, M.Y., et al., Genome-wide association study of susceptibility loci for radiation-induced brain injury, J. Natl. Cancer Inst., 2019, vol. 111, no. 6, pp. 620—628. https://doi.org/10.1093/jnci/djy150

    Article  CAS  PubMed  Google Scholar 

  6. Yang, D.W., Wang, T.M., Zhang, J.B., et al., Genome-wide association study identifies genetic susceptibility loci and pathways of radiation-induced acute oral mucositis, J. Transl. Med., 2020, vol. 18, no. 1, pp. 1—12. https://doi.org/10.1186/s12967-020-02390-0

    Article  CAS  Google Scholar 

  7. Zheng, S. and Tao, W., Identification of novel transcriptome signature as a potential prognostic biomarker for anti-angiogenic therapy in glioblastoma multiforme, Cancers, 2021, vol. 13, no. 5, p. 1013. https://doi.org/10.3390/cancers13051013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhosle, S.M., Huilgol, N.G., and Mishra, K.P., Apoptotic index as predictive marker for radiosensitivity of cervical carcinoma: evaluation of membrane fluidity, biochemical parameters and apoptosis after the first dose of fractionated radiotherapy to patients, Cancer Detect. Prev., 2005, vol. 29, no. 4, pp. 369—375. https://doi.org/10.1016/j.cdp.2005.05.002

    Article  PubMed  Google Scholar 

  9. Azria, D., Riou, O., Castan, F., et al., Radiation-induced CD8 T-lymphocyte apoptosis as a predictor of breast fibrosis after radiotherapy: results of the prospective multicenter French Trial, EBioMedicine, 2015, vol. 2, no. 13, pp. 1965—1973. https://doi.org/10.1016/j.ebiom.2015.10.024

    Article  PubMed  PubMed Central  Google Scholar 

  10. Anderson, R.M., Cytogenetic biomarkers of radiation exposure, Clin. Oncol., 2019, vol. 31, no. 5, pp. 311—318. https://doi.org/10.1016/j.clon.2019.02.009

    Article  CAS  Google Scholar 

  11. Bucher, M., Endesfelder, D., Roessler, U., et al., Analysis of chromosomal aberrations and γH2A.X foci to identify radiation-sensitive ataxia—telangiectasia patients, Mutat. Res., Genet. Toxicol. Environ. Mutagen., 2021, vol. 861, p. 503301. https://doi.org/10.1016/j.mrgentox.2020.503301

    Article  CAS  Google Scholar 

  12. Guogytė, K., Plieskienė, A., Ladygienė, R., et al., Assessment of correlation between chromosomal radiosensitivity of peripheral blood lymphocytes after in vitro irradiation and normal tissue side effects for cancer patients undergoing radiotherapy, Genome Integr., 2017, vol. 8, p. 1. https://doi.org/10.4103/2041-9414.198907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Redon, C.E., Dickey, J.S., Bonner, W.M., and Sedelnikova, O.A., γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin, Adv. Space Res., 2009, vol. 43, no. 8, pp. 1171—1178. https://doi.org/10.1016/j.asr.2008.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Markova, E., Vasilyev, S., and Belyaev, I., 53BP1 foci as a marker of tumor cell radiosensitivity, Neoplasma, 2015, vol. 62, no. 5, pp. 770—776. https://doi.org/10.4149/neo_2015_092

    Article  CAS  PubMed  Google Scholar 

  15. Belyaev, I.Y., Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radio-sensitivity and biological dosimetry, Mutat. Res., Rev. Mutat. Res., 2010, vol. 704, nos. 1—3, pp. 132—141. https://doi.org/10.1016/j.mrrev.2010.01.011

    Article  CAS  Google Scholar 

  16. Sedelnikova, O.A., Horikawa, I., Zimonjic, D.B., et al., Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks, Nat. Cell Biol., 2004, vol. 6, no. 2, pp. 168—170. https://doi.org/10.1038/ncb1095

    Article  CAS  PubMed  Google Scholar 

  17. Han, J., Hendzel, M.J., Allalunis-Turner, J., Quantitative analysis reveals asynchronous and more than DSB-associated histone H2AX phosphorylation after exposure to ionizing radiation, Radiat. Res., 2006, vol. 165, no. 3, pp. 283—292. https://doi.org/10.1667/rr3516.1

    Article  CAS  PubMed  Google Scholar 

  18. Kato, T.A., Okayasu, R., Bedford, J.S., Comparison of the induction and disappearance of DNA double strand breaks and γ-H2AX foci after irradiation of chromosomes in G1-phase or in condensed metaphase cells, Mutat. Res. Fundam. Mol. Mech. Mutagen., 2008, vol. 639, nos. 1—2, pp. 108—112. https://doi.org/10.1016/j.mrfmmm.2007.11.006

    Article  CAS  Google Scholar 

  19. Nakamura, A.J., Redon, C.E., Bonner, W.M., and Sedelnikova, O.A., Telomere-dependent and telomere-independent origins of endogenous DNA damage in tumor cells, Aging, 2009, vol. 1, pp. 212—218. https://doi.org/10.18632/aging.100019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fumagalli, M., Rossiello, F., Clerici, M., et al., Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation, Nat. Cell Biol., 2012, vol. 14, no. 4, pp. 355—365. https://doi.org/10.1038/ncb2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bernadotte, A., Mikhelson, V.M., and Spivak, I.M., Markers of cellular senescence: telomere shortening as a marker of cellular senescence, Aging, 2016, vol. 8, no. 1, pp. 3—11. https://doi.org/10.18632/aging.100871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Georgoulis, A., Vorgias, C.E., Chrousos, G.P., and Rogakou, E.P., Genome instability and γH2AX, Int. J. Mol. Sci., 2017, no. 9, vol. 18, pp. 1979—1989. https://doi.org/10.3390/ijms18091979

    Article  CAS  PubMed Central  Google Scholar 

  23. Vasilev, S.A., Velichevskaya, A.I., Vishnevskaya, T.V., et al., Background level of γH2AX foci in human cells as a factor of individual radiosensitivity, Radiats. Biol., Radioekol., 2015, vol. 55, no. 4, pp. 402—410. https://doi.org/10.7868/S0869803115040128

    Article  Google Scholar 

  24. Martin, O.A., Ivashkevich, A., Choo, S., et al., Statistical analysis of kinetics, distribution and co-localisation of DNA repair foci in irradiated cells: cell cycle effect and implications for prediction of radiosensitivity, DNA Repair., 2013, vol. 12, no. 10, pp. 844—855. https://doi.org/10.1016/j.dnarep.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  25. Muller, S., Neusser, M., Kohler, D., and Cremer, M., Preparation of complex DNA probe sets for 3D FISH with up to six different fluorochromes, Cold Spring Harb. Protoc., 2007, vol. 2007, no. 5. https://doi.org/10.1101/pdb.prot4730

  26. Melnikov, A.A., Vasilyev, S.A., Musabaeva, L.I., et al., Indication of cytogenetic abnormalities in peripheral blood lymphocytes of patients with malignant neoplasms under fast neutron therapy, Tyumen. Med. Zh., 2012, no. 4, pp. 76—78.

  27. Savchenko, R.R., Murashkina, A.A., Fishman, V.S., et al., Effect of ADAMTS1 differential expression on the radiation-induced response of HeLa cell line, Russ. J. Genet., 2021, vol. 57, no. 7, pp. 856—862. https://doi.org/10.1134/S1022795421070127

    Article  CAS  Google Scholar 

  28. Edie, S., Zaghloul, N.A., Leitch, C.C., et al., Survey of human chromosome 21 gene expression effects on early development in Danio rerio, G3 (Bethesda, MD), 2018, vol. 8, no. 7, pp. 2215—2223. https://doi.org/10.1534/g3.118.200144

    Article  CAS  Google Scholar 

  29. GEO accession viewer. https://www.ncbi.nlm.nih.gov/ geo/query/acc.cgi?acc=GSE97000. Accessed May 19, 2021.

  30. Tilton, S.C., Markillie, L.M., Hays, S., et al., Identification of differential gene expression patterns after acute exposure to high and low doses of low-LET ionizing radiation in a reconstituted human skin tissue, Radiat. Res., 2016, vol. 186, no. 5, pp. 531—538. https://doi.org/10.1667/rr14471.1

    Article  CAS  PubMed  Google Scholar 

  31. Cilensek, Z.M., Yehiely, F., Kular, R.K., and Deiss, L.P., A member of the GAGE family of tumor antigens is an anti-apoptotic gene that confers resistance to Fas/CD95/APO-1, interferon-gamma, taxol and gamma-irradiation, Cancer Biol. Ther., 2002, vol. 1, no. 4, pp. 379—386. https://doi.org/10.4161/cbt.1.4.11

    Article  Google Scholar 

  32. Herbert, K., Binet, R., Lambert, J.P., et al., BRN2 suppresses apoptosis, reprograms DNA damage repair, and is associated with a high somatic mutation burden in melanoma, Genes Dev., 2019, vol. 33, nos. 5—6, pp. 310—332. https://doi.org/10.1101/gad.314633.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. You, Y., Wen, R., Pathak, R., et al., Latexin sensitizes leukemogenic cells to gamma-irradiation-induced cell-cycle arrest and cell death through Rps3 pathway, Cell Death Dis., 2014, vol. 5, no. 10. e1493. https://doi.org/10.1038/cddis.2014.443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tanaka, Y., Imamura, J., Kanai, F., et al., Runx3 interacts with DNA repair protein Ku70, Exp. Cell Res., 2007, vol. 313, no. 15, pp. 3251—3260. https://doi.org/10.1016/j.yexcr.2007.06.012

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, J., Han, P., Qian, J., et al., Knockdown of ALPK2 blocks development and progression of renal cell carcinoma, Exp. Cell Res., 2020, vol. 392, no. 2, p. 112029. https://doi.org/10.1016/j.yexcr.2020.112029

    Article  CAS  PubMed  Google Scholar 

  36. Eckers, J.C., Kalen, A.L., Xiao, W., et al., Selenoprotein P inhibits radiation-induced late reactive oxygen species accumulation and normal cell injury, Int. J. Radiat. Oncol. Biol. Phys., 2013, vol. 87, no. 3, pp. 619—625. https://doi.org/10.1016/j.ijrobp.2013.06.2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Graham, L.D., Pedersen, S.K., Brown, G.S., et al., Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas, Genes Cancer, 2011, vol. 2, no. 8, pp. 829—840. https://doi.org/10.1177/1947601911431081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ellis, B.C., Molloy, P.L., and Graham, L.D., CRNDE: a long non-coding RNA involved in CanceR, neurobiology, and development, Front. Genet., 2012, vol. 3, p. 270. https://doi.org/10.3389/fgene.2012.00270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, X., Sun, S., Pu, J.K.S., et al., Long non-coding RNA expression profiles predict clinical phenotypes in glioma, Neurobiol. Dis., 2012, vol. 48, no. 1, pp. 1—8. https://doi.org/10.1016/j.nbd.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  40. Szafron, L.M., Balcerak, A., Grzybowska. E.A., et al., The novel gene CRNDE encodes a nuclear peptide (CRNDEP) which is overexpressed in highly proliferating tissues, PLoS One, 2015, vol. 10, no. 5. e0127475. https://doi.org/10.1371/journal.pone.0127475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han, P., Li, J.W., Zhang, B.M., et al., The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling, Mol. Cancer, 2017, vol. 16, no. 1, pp. 1—13. https://doi.org/10.1186/s12943-017-0583-1

    Article  CAS  Google Scholar 

  42. Liu, C., Hou, J., Shan, F., et al., Long non-coding RNA CRNDE promotes colorectal carcinoma cell progression and paclitaxel resistance by regulating miR-126-5p/ATAD2 axis, OncoTargets Ther., 2020, vol. 13, pp. 4931—4942. https://doi.org/10.2147/OTT.S237580

    Article  CAS  Google Scholar 

  43. Ellis, B.C., Graham, L.D., and Molloy, P.L., CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism, Biochim. Biophys. Acta, Mol. Cell Res., 2014, vol. 1843, no. 2, pp. 372—386. https://doi.org/10.1016/j.bbamcr.2013.10.016

    Article  CAS  Google Scholar 

  44. Wu, D., Han, B., Guo, L., and Fan, Z., Molecular mechanisms associated with breast cancer based on integrated gene expression profiling by bioinformatics analysis, J. Obstet. Gynaecol., 2016, vol. 36, no. 5, pp. 615—621. https://doi.org/10.3109/01443615.2015.1127902

    Article  CAS  PubMed  Google Scholar 

  45. Ewan, K.B., Henshall-Powell, R.L., Ravani, S.A., et al., Transforming growth factor-B1 mediates cellular response to DNA damage in situ, Cancer Res. 2002, vol. 62, no. 20, pp. 5627—5631.

    CAS  PubMed  Google Scholar 

  46. Kirshner, J., Jobling, M.F., Pajares, M.J., et al., Inhibition of transforming growth factor-β1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress, Cancer Res., 2006, vol. 66, no. 22, pp. 10861—10869. https://doi.org/10.1158/0008-5472.can-06-2565

    Article  CAS  PubMed  Google Scholar 

  47. Wiegman, E.M., Blaese, M.A., Loeffler, H., et al., TGFβ-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGFβ-receptor I signaling, Radiother. Oncol., 2007, vol. 83, no. 3, pp. 289—295. https://doi.org/10.1016/j.radonc.2007.05.013

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study was supported by the Russian Foundation for Basic Research, projects no. 14-04-31867 (experiments conducted with PBMCs of healthy individuals) and no. 19-34-90143 (experiments conducted with cell lines).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Vasilyev.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyev, S.A., Savchenko, R.R., Belenko, A.A. et al. ADAMTS1 Is Differentially Expressed in Human Lymphocytes with Various Frequencies of Endogenous γH2AX Foci and Radiation-Induced Micronuclei. Russ J Genet 58, 1235–1244 (2022). https://doi.org/10.1134/S102279542210012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542210012X

Keywords:

Navigation