Skip to main content
Log in

Polymorphism, Molecular Characteristics of Alpha-Lactalbumin (LALBA) Gene in River and Swamp Buffalo

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Alpha-lactalbumin (α-LA) is a unique whey protein associated with lactation traits in ruminants, but so far, buffalo LALBA gene have not been well understood. In this work, the polymorphisms of LALBA gene in river type and swamp type buffalo were identified using direct sequencing of PCR product. As a result, 26 single nucleotide polymorphisms (SNPs) were determined in the LALBA in two types of buffalo, of which three were located in the 5' untranslated region (UTR), eighteen in the coding sequence (CDS), and five in the 3' UTR, and the variation pattern of LALBA gene was different between two types of buffalo. Ten SNPs in the CDS were non-synonymous, among which the amino acid changes caused by the c.95A>G, c.218A>G, c.286T>G and c.308A>G may affect the function of buffalo α-LA. A total of 11 LALBA CDS haplotypes was defined, of which B1 and B3 haplotypes were shared by river and swamp buffalo and the remains were only found in river buffalo. Accordingly, nine variants and two synonymous variants of buffalo α-LA were inferred, named variant A, A1, A2, B, C, D, E, F, G, H and I, respectively. The length of LALBA CDS for two types of buffalo was 429 nucleotides, encoding a precursor protein of 142 amino acids (AAs), and the first 19 AAs constitute a signal peptide. The composition and physicochemical characteristics of two types of buffalo α-LAs were the same, but slightly different from those of cattle α-LA. The α-LA mature peptides of buffalo and Bos genus contain a LYZ_LA functional domain and their tertiary structures are highly consistent, indicating that they are functionally similar. Our results provided initial insights into the variation, characteristics and biological function of buffalo LALBA gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Meza-Nieto, M.A., Vallejo-Cordoba, B., González-Córdova, A.F., et al., Effect of beta-lactoglobulin A and B whey protein variants on the rennet-induced gelation of skim milk gels in a model reconstituted skim milk system, J. Dairy Sci., 2007, vol. 90, no. 2, pp. 582—593. https://doi.org/10.3168/jds.S0022-0302(07)71541-2

    Article  CAS  PubMed  Google Scholar 

  2. Dettori, M.L., Pazzola, M., Paschino, P., et al., Variability of the caprine whey protein genes and their association with milk yield, composition and renneting properties in the Sarda breed: 1. The LALBA gene, J. Dairy Res., 2015, vol. 82, no. 4, pp. 434—441. https://doi.org/10.1017/S0022029915000461

    Article  CAS  PubMed  Google Scholar 

  3. Calderone, V., Giuffrida, M.G., Viterbo, D., et al., Amino acid sequence and crystal structure of buffalo α‑lactalbumin, FEBS Lett., 1996, vol. 394, no. 1, pp. 91—95. https://doi.org/10.1016/0014-5793(96)00933-7

    Article  CAS  PubMed  Google Scholar 

  4. Voelker, G.R., Bleck, G.T., and Wheeler, M.B., Single-base polymorphisms within the 5' flanking region of the bovine alpha-lactalbumin gene, J. Dairy Sci., 1997, vol. 80, no. 1, pp. 194—197. https://doi.org/10.3168/jds.S0022-0302(97)75927-7

    Article  CAS  PubMed  Google Scholar 

  5. Reich, C.M. and Arnould, J.P.Y., Evolution of pinnipedia lactation strategies: a potential role for α-lactalbumin, Biol. Lett., 2007, vol. 3, no. 5, pp. 546—549. https://doi.org/10.1098/rsbl.2007.0265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. García-Gámez, E., Gutiérrez-Gil, B., Sahana, G., et al., GWA analysis for milk production traits in dairy sheep and genetic support for a QTN influencing milk protein percentage in the LALBA gene, PLoS One, 2012, vol. 7, no. 10. e47782. https://doi.org/10.1371/journal.pone.0047782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cross, M.L. and Gill, H.S., Immunomodulatory properties of milk, Brit. J. Nutr., 2000, vol. 84, no. S1, pp. S81—S89. https://doi.org/10.1017/S0007114500002294

    Article  CAS  PubMed  Google Scholar 

  8. Hakansson, A., Zhivotovsky, B., Orrenius, S., et al., Apoptosis induced by a human milk protein, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, no. 17, pp. 8064—8068. https://doi.org/10.1073/pnas.92.17.8064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Madureira, A.R., Pereira, C.U.I., Gomes, A.M.P., et al., Bovine whey proteins—overview on their main biological properties, Food Res. Int., 2007, vol. 40, no. 10, pp. 1197—1211. https://doi.org/10.1016/j.foodres.2007.07.005

    Article  CAS  PubMed Central  Google Scholar 

  10. Farrell, H.M.J., Jimenez-Flores, R., Bleck, G.T., et al., Nomenclature of the proteins of cows’ milk—sixth revision, J. Dairy Sci., 2004, vol. 87, no. 6, pp. 1641—1674. https://doi.org/10.3168/jds.s0022-0302(04)73319-6

    Article  CAS  PubMed  Google Scholar 

  11. Caffin, J.P., Poutrel, B., and Rainard, P., Physiological and pathological factors influencing bovine alpha-lactalbumin and beta-lactoglobulin concentrations in milk, J. Dairy Sci., 1985, vol. 68, no. 5, pp. 1087—1094. https://doi.org/10.3168/jds.S0022-0302(85)80933-4

    Article  CAS  PubMed  Google Scholar 

  12. Caroli, A.M., Chessa, S., and Erhardt, G.J., Invited review: milk protein polymorphisms in cattle: effect on animal breeding and human nutrition, J. Dairy Sci., 2009, vol. 92, no. 11, pp. 5335—5352. https://doi.org/10.3168/jds.2009-2461

    Article  CAS  PubMed  Google Scholar 

  13. Visker, M.H.P.W., Heck, J.M.L., van Valenberg, H.J.F., et al., A new bovine milk-protein variant: α-lactalbumin variant D, J. Dairy Sci., 2012, vol. 95, no. 4, pp. 2165—2169. https://doi.org/10.3168/jds.2011-4794

    Article  CAS  PubMed  Google Scholar 

  14. Michelizzi, V.N., Dodson, M.V., Pan, Z., et al., Water buffalo genome science comes of age, Int. J. Biol. Sci., 2010, vol. 6, no. 4, pp. 333—349. https://doi.org/10.7150/ijbs.6.333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Basilicata, M.G., Pepe, G., Sommella, E., et al., Peptidome profiles and bioactivity elucidation of buffalo-milk dairy products after gastrointestinal digestion, Food Res. Int., 2017, vol. 105, pp. 1003—1010. https://doi.org/10.1016/j.foodres.2017.12.038

    Article  CAS  PubMed  Google Scholar 

  16. Ahmad, S., Anjum, F.M., Huma, N.A., et al., Composition and physico-chemical characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins, J. Anim. Plant Sci., 2013, vol. 23, pp. 62—74.

    Google Scholar 

  17. Bleck, G.T. and Bremel, R.D., Correlation of the α-lactalbumin (+15) polymorphism to milk production and milk composition of Holsteins, J. Dairy Sci., 1993, vol. 76, no. 8, pp. 2292—2298. https://doi.org/10.3168/jds.S0022-0302(93)77566-9

    Article  CAS  PubMed  Google Scholar 

  18. Dayal, S., Bhattacharya, T.K., Vohra, V., et al., Effect of alpha-lactalbumin gene polymorphism on milk production traits in water buffalo, Asian Austral. J. Anim., 2006, vol. 19, no. 3, pp. 305—308. https://doi.org/10.5713/ajas.2006.305

    Article  CAS  Google Scholar 

  19. Sambrock, J. and Russell, D., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2001, 3rd ed. https://doi.org/10.2307/1309366.

  20. Lalitha, S., Primer Premier 5, Biotech Software and Internet Report, 2000, vol. 1, no. 6, pp. 270—272. https://doi.org/10.1089/152791600459894

    Article  Google Scholar 

  21. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725—2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yeh, F.C. and Boyle, T.B.J., Population genetic analysis of co-dominant and dominant marker and quantitative traits, Belg. J. Bot., 1997, vol. 129, pp. 157—163.

    Google Scholar 

  23. Mi, H., Huang, X., Muruganujan, A., et al., PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements, Nucleic Acids Res., 2017, vol. 45, no. D1, pp. D183—D189. https://doi.org/10.1093/nar/gkw1138

    Article  CAS  PubMed  Google Scholar 

  24. Stephens, M., Smith, N.J., and Donnelly, P., A new statistical method for haplotype reconstruction from population data, Am. J. Hum. Genet., 2001, vol. 68, no. 4, pp. 978—989. https://doi.org/10.1086/319501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. El-Hanafy, A.A.M., Qureshi, M.I., Sabir, J.S.M., et al., Allele mining in the caprine alpha-lactalbumin (LALBA) gene of native Saudi origin, Biotechnol. Biotechnol. Equip., 2016, vol. 30, no. 6, pp. 1115—1121. https://doi.org/10.1080/13102818.2016.1224683

    Article  CAS  Google Scholar 

  26. Dayal, S., Bhattacharya, T.K., Vohra, V., et al., Genetic polymorphism of alpha-lactalbumin gene in riverine buffalo, DNA Seq., 2005, vol. 16, no. 3, pp. 173—179. https://doi.org/10.1080/10425170500088205

    Article  CAS  PubMed  Google Scholar 

  27. Manzoor, S., Nadeem, A., and Javed, M., Polymorphism association and expression analysis of alpha-lactalbumin (LALBA) gene during lactation in Nili Ravi buffalo, Trop. Anim. Health Pro., 2019, vol. 52, no. 1, pp. 265—271. https://doi.org/10.1007/s11250-019-02010-0

    Article  Google Scholar 

  28. Fan, X., Zhang, Z., Qiu, L., et al., Polymorphisms of the kappa casein (CSN3) gene and inference of its variants in water buffalo (Bubalus bubalis), Arch. Anim. Breed., 2019, vol. 62, pp. 585—596. https://doi.org/10.5194/aab-62-585-2019

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen, F., Li, Q., Gu, M., et al., Identification of a mutation in FGF23 involved in mandibular prognathism, Sci. Rep., 2015, vol. 5, p. 11250. https://doi.org/10.1038/srep11250

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cosenza, G., Gallo, D., Illario, R., et al., A Mval PCR-RFLP detecting a silent allele at the goat alpha-lactalbumin locus, J. Dairy Res., 2003, vol. 70, no. 3, pp. 355—357. https://doi.org/10.1017/S0022029903006265

    Article  CAS  PubMed  Google Scholar 

  31. Qasba, P.K. and Kumar, S., Molecular divergence of lysozymes and α-lactalbumin, Crit. Rev. Biochem. Mol., 1997, vol. 32, no. 4, pp. 255—306. https://doi.org/10.3109/10409239709082574

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (nos. 31760659 and 31460582) and the Natural Science Foundation Key Project of Yunnan Province, China (nos. 2014FA032 and 2007C0003Z).

Author information

Authors and Affiliations

Authors

Contributions

The authors X. Y. Fan and L. H. Qiu contributed equally to this study.

Corresponding author

Correspondence to Y. W. Miao.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All procedures for sample collection were performed in accordance with the Guide for Animal Care and Use of Experimental Animals approved by the Yunnan Provincial Experimental Animal Management Committee under Contract 2007-0069.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X.Y., Qiu, L.H., Zhang, Y.Y. et al. Polymorphism, Molecular Characteristics of Alpha-Lactalbumin (LALBA) Gene in River and Swamp Buffalo. Russ J Genet 57, 836–846 (2021). https://doi.org/10.1134/S1022795421070085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421070085

Keywords:

Navigation