Skip to main content
Log in

The First Attempt at Studying the Species Diversity of Fish in Lake Khanka Using DNA Barcoding Techniques

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Lake Khanka is the largest lake in the northeastern part of Asia, being a valuable part of the resources of freshwater fisheries. Lake Khanka has a low value of endemism owing to the recent origin and connection to large river systems of the Amur and Ussuri. The list of fish species present in the lake has been constantly updated owing to invasions that occur both unintentionally and because of the introduction of hydrobionts to maximize the potential of natural productivity. In this regard, the Lake Khanka is a suitable testing ground for the development and implementation of complex methods for monitoring species diversity. The cases of invasion have become more frequent in the lake recently. Moreover, the introduction of some fish species for stabilization of relationships among communities and exhaustive utilization of the natural productivity is now being carried out, which makes challenging the development and implementation of powerful techniques for monitoring of the local fauna species diversity. For the first time, we present a complex approach to the solution of that problem. We collected 64 fish specimens from 16 species representing four families of ray-finned fishes and analyzed their taxonomy and species diversity using both classic methods and DNA barcoding techniques. Specimens have been genotyped based on the mitochondrial Co-1 gene marker. The mean values of K2P-corrected intraspecific genetic distances were 0.15 ± 0.01%; the distances between different species within the same genera were 4.08 ± 0.01%. Phylogenetic analysis revealed monophyletic origin of all species clusters with high support (98–100% of bootstrap values). Thus, reciprocal complement of morphological and genetic techniques for the purpose of species delimitation and high effectiveness of DNA barcoding in application for documentation of species diversity in Lake Khanka has been demonstrated. New molecular genetic data generally are in agreement with taxonomic relationships previously shown for these fish taxa, but an additional investigation is required to verify the composition of genus Acheilognathus in Lake Khanka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. The data for genus Aheilognathus is not included.

REFERENCES

  1. Reid, G.M., Contreras Macbeath, T., and Csatadi, K., Global challenges in freshwater-fish conservation related to public aquariums and the aquarium industry, Int. Zoo Yearb., 2013, vol. 47, no. 1, pp. 6—45. https://doi.org/10.1111/izy.12020

    Article  Google Scholar 

  2. Ormerod, S.J., Current issues with fish and fisheries: editor’s overview and introduction, J. Appl. Ecol., 2003, vol. 40, no. 2, pp. 204—213. https://doi.org/10.1046/j.1365-2664.2003.00824.x

    Article  Google Scholar 

  3. Nelson, J.S., Fishes of the World, Hoboken: Wiley, 2006.

    Google Scholar 

  4. Olden, J.D., Kennard, M.J., Leprieur, F., et al., Conservation biogeography of freshwater fishes: recent progress and future challenges, Divers. Distrib., 2010, vol. 16, no. 3, pp. 496—513. https://doi.org/10.1111/j.1472-4642.2010.00655.x

    Article  Google Scholar 

  5. Dudgeon, D., Arthington, A.H., Gessner, M.O., et al., Freshwater biodiversity: importance, threats, status and conservation challenges, Biol. Rev., 2006, vol. 81, no. 2, p. 163. https://doi.org/10.1017/S1464793105006950

    Article  PubMed  Google Scholar 

  6. Ricciardi, A. and Rasmussen, J.B., Extinction rates of North American freshwater fauna, Conserv. Biol., 1999, vol. 13, no. 5, pp. 1220—1222.

    Article  Google Scholar 

  7. Vié, J.-C., Hilton-Taylor, C., and Stuart, S.N., Wildlife in a Changing World: An Analysis of the 2008 IUCN Red List of Threatened Species, IUCN, 2009.

    Book  Google Scholar 

  8. Bruton, M.N., Have fishes had their chips? The dilemma of threatened fishes, Environ. Biol. Fishes, 1995, vol. 43, no. 1, pp. 1—27. https://doi.org/10.1007/BF00001812

    Article  Google Scholar 

  9. Harrison, I.J. and Stiassny, M.L.J., The quiet crisis, in Extinctions in Near Time, New York: Springer-Verlag, 1999, pp. 271—331.

    Google Scholar 

  10. Reynolds, J.D., Webb, T.J., and Hawkins, L.A., Life history and ecological correlates of extinction risk in European freshwater fishes, Can. J. Fish. Aquat. Sci., 2005, vol. 62, no. 4, pp. 854—862. https://doi.org/10.1139/f05-066

    Article  Google Scholar 

  11. Chen, W., Ma, X., Shen, Y., et al., The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding, Sci. Rep., 2015, vol. 5, p. 17437. https://doi.org/10.1038/srep17437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dahruddin, H., Hadiaty, R.K., and Hubert, N., DNA Barcoding: foundations and applications for southeast Asian freshwater fishes, Treubia, 2017, vol. 43, pp. 1—16. https://doi.org/10.14203/treubia.v43i0.2968

    Article  Google Scholar 

  13. Geiger, M.F., Herder, F., Monaghan, M.T., et al., Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes, Mol. Ecol. Resour., 2014, vol. 14, no. 6, pp. 1210—1221. https://doi.org/10.1111/1755-0998.12257

    Article  CAS  PubMed  Google Scholar 

  14. Hubert, N., Hanner, R., Holm, E., et al., Identifying Canadian freshwater fishes through DNA barcodes, PLoS One, 2008, vol. 3, no. 6. https://doi.org/10.1371/journal.pone.0002490

  15. Knebelsberger, T., Dunz, A.R., Neumann, D., and Geiger, M.F., Molecular diversity of Germany’s freshwater fishes and lampreys assessed by DNA barcoding, Mol. Ecol. Resour., 2015, vol. 15, no. 3, pp. 562—572. https://doi.org/10.1111/1755-0998.12322

    Article  CAS  PubMed  Google Scholar 

  16. Levin, B.A., Simonov, E., Matveyev, M.P., et al., DNA barcoding of the fishes of the genus Alburnoides (Actinopterygii, Cyprinidae) from Caucasus, Mitochondrial DNA, Part A, 2018, vol. 29, no. 1, pp. 49—55. https://doi.org/10.1080/24701394.2016.1238900a

    Article  CAS  Google Scholar 

  17. Mustafa, K., Yerli, S.V., Mangit, F., et al., Fish biodiversity in inland waters of Turkey, J. Acad. Doc. Fish. Aquacult., 2014, vol. 1, no. 3, pp. 93—120.

    Google Scholar 

  18. Pereira, L.H.G., Hanner, R., Foresti, F., and Oliveira, C., Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?, BMC Genet., 2013, vol. 14, p. 20. https://doi.org/10.1186/1471-2156-14-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barman, A.S., Singh, M., and Pandey, P.K., DNA barcoding and genetic diversity analyses of fishes of Kaladan River of Indo-Myanmar biodiversity hotspot, Mitochondrial DNA, Part A, 2017. https://doi.org/10.1080/24701394.2017.1285290

  20. Kartavtsev, Y.P., Batischeva, N.M., Bogutskaya, N.G., et al., Molecular systematics and DNA barcoding of Altai osmans, Oreoleuciscus (pisces, cyprinidae, and leuciscinae), and their nearest relatives, inferred from sequences of cytochrome b (Cyt-b), cytochrome oxidase c (Co-1), and complete mitochondrial genome, Mitochondrial DNA, Part A, 2017, vol. 28, no. 4, pp. 502—517. https://doi.org/10.3109/24701394.2016.1149822

    Article  CAS  Google Scholar 

  21. Kondo, N.I., Nakagawa, M., Matsuzaki, S., et al., DNA barcoding, environmental DNA and an ongoing attempt of detecting biodiversity in Lake Kasumigaura, J. Integr. F. Sci., 2016, vol. 13, pp. 21—29.

    Google Scholar 

  22. Maranan, J.B.D., Basiao, Z.U., and Quilang, J.P., DNA barcoding of feral tilapias in Philippine lakes, Mitochondrial DNA, 2015, vol. 1736, pp. 1—12. https://doi.org/10.3109/19401736.2015.1089478

    Article  CAS  Google Scholar 

  23. Overdyk, L.M., Braid, H.E., Crawford, S.S., and Hanner, R.H., Extending DNA barcoding coverage for Lake Whitefish (Coregonus clupeaformis) across the three major basins of Lake Huron, DNA Barcodes, 2015, vol. 3, no. 1, pp. 59—65. https://doi.org/10.1515/dna-2015-0007

    Article  Google Scholar 

  24. Shen, Y., Guan, L., Wang, D., and Gan, X., DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River, Ecol. Evol., 2016, vol. 6, no. 9, pp. 2702—2713. https://doi.org/10.1002/ece3.2060

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang, T., Meng, W., Zhang, R., et al., DNA barcoding of fishes in Irtysh River, China, Russ. J. Genet., 2016, vol. 52, no. 9, pp. 969—976.

    Article  CAS  Google Scholar 

  26. Turanov, S.V., Kartavtsev, Yu.Ph., Lipinsky, V.V., et al., DNA-barcoding of perch-like fishes (Actinopterygii: Perciformes) from far-eastern seas of Russia with taxonomic remarks for some groups, Mitochondrial DNA, 2016, vol. 27, no. 2, pp. 1188—1209. https://doi.org/10.3109/19401736.2014.945525

    Article  CAS  PubMed  Google Scholar 

  27. Gordeeva, N.V. and Shakhovskoi, I.B., Efficiency of DNA barcoding for phylogenetic analysis and species identification in flying fish (Exocoetidae), J. Ichthyol., 2017, vol. 57, no. 2, pp. 287—296. https://doi.org/10.1134/S0032945217020096

    Article  Google Scholar 

  28. Kodukhova, Yu.V. and Karabanov, D.P., Morphological changes in the roach (Rutilus rutilus, Cyprinidae) population of Lake Pleshcheevo as a result of the mollusk Dreissena polymorpha (Bivalvia) introduction, Zool. Zh., 2017, vol. 96, no. 9, pp. 1069—1077.

    Google Scholar 

  29. Ermakov, O.A., Levina, M.A., Titov, S.V., and Levin, B.A., mtDNA-based identification of two widespread roach species (Rutilus, Cyprinidae) characterized by sympatric zone, Inland Water Biol., 2017, vol. 10, no. 1, pp. 112—114. https://doi.org/10.1134/S1995082917010060

    Article  Google Scholar 

  30. Nedunoori, A., Turanov, S.V., and Kartavtsev, Y.P., Fish product mislabeling identified in the Russian Far East using DNA barcoding, Gene Rep., 2017, vol. 8, pp. 144—149. https://doi.org/10.1016/j.genrep.2017.07.006

    Article  Google Scholar 

  31. Hebert, P.D.N., Cywinska, A., Ball, S.L., and de Waard, J.R., Biological identifications through DNA barcodes, Proc. Biol. Sci., 2003, vol. 270, no. 1512, pp. 313—321. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hebert, P.D.N., Ratnasingham, S., and de Waard, J.R., Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species, Proc. Biol. Sci., 2003, vol. 270, suppl., pp. S96—S99. https://doi.org/10.1098/rsbl.2003.0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ivanova, N.V., Zemlak, T.S., Hanner, R.H., and Hebert, P.D.N., Universal primer cocktails for fish DNA barcoding, Mol. Ecol. Notes, 2007, vol. 7, no. 4, pp. 544—548. https://doi.org/10.1111/j.1471-8286.2007.01748.x

    Article  CAS  Google Scholar 

  34. Ratnasingham, S. and Hebert, P.D.N., BOLD: the barcode of life data system, Mol. Ecol. Notes, 2007, vol. 7, no. 3, pp. 355—364. https://doi.org/10.1111/j.1471-8286.2007.01678.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ratnasingham, S. and Hebert, P.D.N., A DNA-based registry for all animal species: the barcode index number (BIN) system, PLoS One, 2013, vol. 8, no. 7. https://doi.org/10.1371/journal.pone.0066213

  36. Becker, S., Hanner, R., and Steinke, D., Five years of FISH-BOL: brief status report, Mitochondrial DNA, 2011, vol. 22, no. S1, pp. 3—9. https://doi.org/10.3109/19401736.2010.535528

    Article  CAS  PubMed  Google Scholar 

  37. Ward, R.D., Hanner, R., and Hebert, P.D.N., The campaign to DNA barcode all fishes, FISH-BOL, J. Fish Biol., 2009, vol. 74, no. 2, pp. 329—356. https://doi.org/10.1111/j.1095-8649.2008.02080.x

    Article  CAS  PubMed  Google Scholar 

  38. Ward, R.D., DNA barcode divergence among species and genera of birds and fishes, Mol. Ecol. Resour., 2009, vol. 9, no. 4, pp. 1077—1085. https://doi.org/10.1111/j.1755-0998.2009.02541.x

    Article  CAS  PubMed  Google Scholar 

  39. Collins, R.A. and Cruickshank, R.H., The seven deadly sins of DNA barcoding, Mol. Ecol. Resour., 2013, vol. 13, no. 6, pp. 969—975. https://doi.org/10.1111/1755-0998.12046

    Article  CAS  PubMed  Google Scholar 

  40. Meyer, C.P. and Paulay, G., DNA barcoding: error rates based on comprehensive sampling, PLoS Biol., 2005, vol. 3, no. 12, pp. 1—10. https://doi.org/10.1371/journal.pbio.0030422

    Article  CAS  Google Scholar 

  41. Ardura, A., Planes, S., and Garcia-Vazquez, E., Applications of DNA barcoding to fish landings: authentication and diversity assessment, Zookeys, 2013, vol. 365, spec. issue, pp. 49—65. https://doi.org/10.3897/zookeys.365.6409

    Article  Google Scholar 

  42. Kress, W.J., Garcia-Robledo, C., Uriarte, M., and Erickson, D.L., DNA barcodes for ecology, evolution, and conservation, Trends Ecol. Evol., 2015, vol. 30, no. 1, pp. 25—35. https://doi.org/10.1016/j.tree.2014.10.008

    Article  PubMed  Google Scholar 

  43. Trivedi, S., Aloufi, A.A., Ansari, A.A., and Ghosh, S.K., Role of DNA barcoding in marine biodiversity assessment and conservation: an update, Saudi J. Biol. Sci., 2016, vol. 23, no. 2, pp. 161—171. https://doi.org/10.1016/j.sjbs.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  44. Barabanshchikov, E.I., Shapovalov, M.E., and Svirskii, V.G., Dynamic processes in the ichthyocene of Lake Khanka, in Chteniya pamyati Vladimira Yakovlevicha Levanidova (Lectures in Memory of Vladimir Yakovlevich Levanidov), Vladivostok: Dalnauka, 2011, no. 5, pp. 35—41.

  45. Barabanshchikov, E.I., Nazarov, V.A., and Svirskii, V.G., The fauna of cyclostomes and fishes of Lake Khanka, Izv. Tikhookean. Inst. Rybovod. Okeanogr., 2006, vol. 146, pp. 97—110.

    Google Scholar 

  46. Bogutskaya, N.G. and Naseka, A.M., Cyclostomes and Fishes of the Lake Khanka Basin (Amur River System): Annotated Checklist of Species with Comments on Their Taxonomy and Zoogeography of the Region, St. Petersburg: Gosudarstvennyi Nauchno-Issledovatel’skii Institut Ozernogo i Rechnogo Rybnogo Khozyaistva, 1996, pp. 1—45.

    Google Scholar 

  47. Bogutskaya, N.G. and Naseka, A.M., Katalog beschelyustnykh i ryb presnykh i solonovatykh vod Rossii s nomenklaturnymi i taksonomicheskimi kommentariyami (Catalogue of Agnathostomatous and Fishes of Fresh and Brackish Waters of Russia with Nomenclature and Taxonomic Notes), Moscow: Tovarishch. Nauchn. Izd. KMK, 2004.

  48. Svirskii, V.G. and Barabanshchikov, E.I., Biological invasions as an element of anthropogenic pressure on the community of hydrobionts of Lake Khanka, Russ. Zh. Biol. Invazii, 2009, no. 2, pp. 29—35.

  49. Shedko, S.V., List of cyclostomata and fishes of fresh waters of the coast of Primorye, in Chteniya pamyati Vladimira Yakovlevicha Levanidova (Lectures in Memory of Vladimir Yakovlevich Levanidov), Vladivostok: Dalnauka, 2001, no. 1, pp. 229—249.

  50. Shedko, S.V. and Shedko, M.B., New data on the freshwater fauna of the south of the Russian Far East, in Chteniya pamyati Vladimira Yakovlevicha Levanidova (Lectures in Memory of Vladimir Yakovlevich Levanidov), Vladivostok: Dalnauka, 2003, no. 2, pp. 319—336.

  51. Taranets, A.Ya., Short guide to fishes of the Soviet Far East and adjacent waters, Izv. Tikhookean. Inst. Rybovod. Okeanogr., 1937, vol. 11, pp. 1–200.

    Google Scholar 

  52. Nikolsky, G.V., Fishes of the Amur River Basin, Moscow: Akademiya Nauk SSSR, 1956.

    Google Scholar 

  53. Parin, N.V., Evseenko, S.A., and Vasil’eva, E.D., Fishes of the Russian Seas: Annotated Catalogue, Moscow: KMK Scientific Press, 2014.

    Google Scholar 

  54. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  55. Ward, R.D., Zemlak, T.S., Innes, B.H., et al., DNA barcoding Australia’s fish species, Philos. Trans. R. Soc., B, 2005, vol. 360, no. 1462, pp. 1847—1857. https://doi.org/10.1098/rstb.2005.1716

  56. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725—2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792—1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Altschul, S.F., Gish, W., Miller, W., et al., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, no. 3, pp. 403—410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  59. Benson, D.A., Clark, K., Karsch-Mizrachi, I., et al., GenBank, Nucleic Acids Res., 2015, vol. 43, no. D1, pp. D30—D35. https://doi.org/10.1093/nar/gku1216

    Article  CAS  PubMed  Google Scholar 

  60. Kimura, M., A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 1980, vol. 16, no. 2, pp. 111—120.

    Article  CAS  PubMed  Google Scholar 

  61. Ronquist, F., Teslenko, M., Mark, P.V.D., Ayres, D.L., and Darling, A., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 2012, vol. 61, no. 3, pp. 539—542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  62. Weigt, L.A., Driskell, A.C., Baldwin, C.C., and Ormos, A., DNA barcoding fishes, DNA Barcodes Methods Protoc., 2012, pp. 109—126.

    Book  Google Scholar 

  63. Chang, C.-H., Li, F., Shao, K.-T., et al., Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: evidence for necessary taxonomic revision in the family and the identification of cryptic species, Mol. Phylogenet. Evol., 2014, vol. 81, pp. 182—194. https://doi.org/10.1016/j.ympev.2014.08.026

    Article  PubMed  Google Scholar 

  64. Bogutskaya, N.G., Limits and morphological features of the cyprinids, subfamily Leuciscinae (Cyprinidae), Tr. Zool. Inst. Akad. Nauk SSSR, 1988, vol. 181, pp. 96—113.

    Google Scholar 

  65. Nikolsky, G.V., Chastnaya ikhtiologiya (Special Ichthyology), Moscow: Vysshaya shkola, 1971.

  66. Schönhuth, S., Vukić, J., Šanda, R., et al., Phylogenetic relationships and classification of the Holarctic family Leuciscidae (Cypriniformes: Cyprinoidei), Mol. Phylogenet. Evol., 2018, vol. 127, pp. 781—799. https://doi.org/10.1016/j.ympev.2018.06.026

    Article  PubMed  Google Scholar 

  67. Naseka, A.M. and Bogutskaya, N.G., Contribution to taxonomy and nomenclature of freshwater fishes of the Amur drainage area and the Far East (Pisces, Osteichthyes), Zoosyst. Ross., 2004, vol. 12, no. 2, pp. 279–290.

    Google Scholar 

  68. Bogutskaya, N.G., Naseka, A.M., Shedko, S.V., et al., The fishes of the Amur River: updated check-list and zoogeography, Ichtyol. Explor. Freshwaters, 2008, vol. 19, no. 4, pp. 301—366.

    Google Scholar 

  69. Naseka, A.M., Comparative morphological bases of the cyprinid fish system of the gudgeon subfamily (Gobioninae, Cyprinidae) of the world fauna, Extended Abstract of Cand. Sci. Dissertation, St. Peterburg. Gos. Univ., St. Petersburg, 1998.

  70. Naseka, A.M., Major patterns of phenotypic diversity, phylogeny and systematics of the gudgeons (Teleostei: Cypriniformes: Gobioninae), Joint Meeting of Ichthyologists and Herpetologists (Proc. Conf.), New Orleans, 2006. http://www.researchgate.net/publication/277721006.

  71. Kurdyaeva, V.P. and Shkarina, T.V., To the biology of the smallscale yellowfin Plagiognathops microlepis (Bleeker) and blackbelly Xenocypris macrolepis Bleeker from the Lake Khanka, Izv. Tikhookean. Inst. Rybovod. Okeanogr., 1998, vol. 123, pp. 299—318.

    Google Scholar 

  72. Shapovalov, M.E. and Kurdyaeva, V.P., Reproduction characteristics of bleaks (Cultrinae, Cyprinidae) from the Lake Khanka, Problemy sokhraneniya vodno-bolotnykh ugodii mezhdunarodnogo znacheniya: ozero Khanka (Conservation of Wetlands of International Importance: Lake Khanka) (Proc. 2nd Int. Theor. Pract. Conf., Spassk-Dal’nii, 10—11 Juni, 2006), Vladivostok, 2006, pp. 74—94.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 15-29-02456) and the Far East Program (project no. 18-4-040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Turanov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by A. Lisenkova

Supplementary materials are available for this article at DOI: 10.1134/S102279541904015X and are accessible for authorized users.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turanov, S.V., Kartavtsev, Y.P. & Shapovalov, M.E. The First Attempt at Studying the Species Diversity of Fish in Lake Khanka Using DNA Barcoding Techniques. Russ J Genet 55, 464–472 (2019). https://doi.org/10.1134/S102279541904015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541904015X

Keywords:

Navigation