Skip to main content
Log in

Genetic diversity and population structure of Taxus cuspidata Sieb. et Zucc. ex Endl. (Taxaceae) in Russia according to data of the nucleotide polymorphism of intergenic spacers of the chloroplast genome

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The genetic diversity and population structure of Taxus cuspidata Sieb. et Zucc. ex Endl. on the Russian part of its range was studied for the first time on the basis of the nucleotide polymorphism of intergenic spacers psbA–trnH, trnL–trnF, and trnS–trnfM of chloroplast DNA. A high level of gene (h = 0.807) and nucleotide (π = 0.0227) diversity was revealed. The data of AMOVA showed that the interpopulation component accounted for 12% of genetic variability (F ST = 0.12044, P = 0.0000). We revealed 15 haplotypes, four of which were shown to be unique. The presence of common haplotypes in the majority of populations, the absence of phylogenetic structure, and low values or even the absence of nucleotide divergence show that the T. cuspidata populations studied are fragments of the once common ancestor population. Geographical isolation, which resulted from climatic changes in the Pleistocene–Holocene, as well as from human activities, did not produce a significant effect on the genetic structure of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krasnaya Kniga Rossiiskoi Federatsii (rasteniya i griby) (The Red Book of the Russian Federation (Plants and Fungi)), Moscow: Ministerstvo Prirodnykh Resursov i Ekologii Rossiiskoi Federatsii, Rosprirodnadzor, 2008.

  2. Krasnaya kniga Primorskogo kraya: rasteniya. Redkie i nakhodyashchiesya pod ugrozoi ischeznoveniya vidy rastenii i gribov (Red Book of Primorsky Krai: Plants. Rare and Threatened Species of Plants and Fungi), Vladivostok: Apel’sin, 2008.

  3. Katsuki, T. and Luscombe, D., Taxus cuspidata, The IUCN Red List of Threatened Species, 2013. e.T42549A2987373. http://dx.doi.org/. doi 10.2305/IUCN.UK.2013-1.RLTS.T42549A2987373.en

    Google Scholar 

  4. Checklist of CITES Species. http://checklist. cites.org/#/en.

  5. Koropachinskii, I.Yu., Division of Gymnosperms— Pinophyta, in Sosudistye rasteniya sovetskogo Dal’nego Vostoka (Vascular Plants of the Soviet Far East) Leningrad: Nauka, 1989, vol. 4, pp. 9–25.

    Google Scholar 

  6. Kurentsova, G.E., Reliktovye rasteniya Primor’ya (Relict Plants of Primorye), Leningrad: Nauka, 1968.

    Google Scholar 

  7. Yamazaki, T., Taxaceae, in Flora of Japan, vol. 1: Pteridophyta and Gymnospermae, Tokyo: Kodansha, 1995, pp. 286–287.

    Google Scholar 

  8. Nathorst, A.G., Palaeobotanische Mitteillungen: 7. Über Palyssya, Stachyotaxus und Paleotaxus, K. Sven. Vetensk. Akad. Handl., 1908, vol. 8, pp. 1–16.

    Google Scholar 

  9. Florin, R., The distribution of conifers and taxad genera in time and space, Acta Horti. Berg., 1963, vol. 20, pp. 121–312.

    Google Scholar 

  10. Baikovskaya, T.N., Verkhnemiotsenovaya flora Yuzhnogo Primor’ya (Upper Miocene Flora of the Southern Primorye), Leningrad: Nauka, 1974.

    Google Scholar 

  11. Korman, D.B., Osnovy protivoopukholevoi khimioterapii (Fundamentals of Antitumor Chemotherapy), Moscow: Prakticheskaya Meditsina, 2006.

    Google Scholar 

  12. Wani, M.C., Taylor, H.L., Wall, M.E., et al., Plant antitumor agents: 4. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia, J. Am. Chem. Soc., 1971, vol. 93, no. 9, pp. 2325–2327. doi 10.1021/ja00738a045

    CAS  PubMed  Google Scholar 

  13. Kolesnikov, B.P., About a shrub form of Japanese yew (Taxus cuspidata Sieb. et Zucc. ex Endl.), Vestn. Dal’nevost. Fil. Sib. Otd. Akad. Nauk SSSR, 1935, pp. 31–45.

    Google Scholar 

  14. Vasil’ev, N.G., Ivliev, L.A., and Khavkina, N.V., Japanese yew (Taxus cuspidata Sieb. et Zucc. ex Endl.) and its regeneration on Petrov Island (Primorskii krai), in Lesovedenie v Primorskom krae (Forest Science in Primorskii krai), Vladivostok: Biologo-Pochvennyi Institut Dal’nevostochnogo Oltdeleniya Akademii Nauk SSSR, 1969, pp. 37–50.

    Google Scholar 

  15. Voroshilova, G.I., Morphological and anatomical structure of leaf and timber of yew—Taxus cuspidata Siebold et Zucc., in Redkie i ischezayushchie drevesnye rasteniya yuga Dal’nego Vostoka (Rare and Endangered Arboreal Plants of the South of the Far East), Vladivostok: Dal’nevostochnyi Nauchnyi Tsentr Akademii Nauk SSSR, 1978, pp. 129–132.

    Google Scholar 

  16. Prisyazhnyuk, N.P., Habitat and status of Taxus cuspidata Sieb. et Zucc. ex End1. populations in the Lazovsky Reserve of Primorskii krai, Rast. Resur., 1986, vol. 22, no. 4, pp. 487–492.

    Google Scholar 

  17. Belikovich, A.V. and Galanin, A.V., Japanese yew, in Rastitel’nyi mir Sikhote-Alinskogo biosfernogo zapovednika: raznoobrazie, dinamika, monitoring (Plant World of the Sikhote-Alin Biosphere Reserve: Diversity, Dynamics, Monitoring), Vladivostok: Biologo-Pochvennyi Institut Dal’nevostochnogo Oltdeleniya Akademii Nauk SSSR, 2000, pp. 103–107.

    Google Scholar 

  18. Chubar’, E.A., Taxus cuspidata (Taxaceae) on the islands of the Far Eastern State Marine Reserve (Peter the Great Bay, the Sea of Japan), Bot. Zh., 1999, vol. 84, no. 6, pp. 82–94.

    Google Scholar 

  19. Chubar’, E.A., Biological features and structure of populations of Taxus cuspidata (Taxaceae) on the islands of Peter the Great Bay of the Sea of Japan, Bot. Zh., 2016, vol. 101, no. 1, pp. 13–39.

    Google Scholar 

  20. Potenko, V.V., Inheritance of allozymes and genetic variation in natural population of Japanese yew in Petrov Island, Russia, For. Genet., 2001, vol. 8, no. 4, pp. 307–313.

    Google Scholar 

  21. Chung, M.G., Oh, G.S., and Chung, J.M., Allozyme variation in Korean populations of Taxus cuspidata (Taxaceae), Scand. J. For. Res., 1999, vol. 14, pp. 103–110. doi 10.1080/02827589950152827

    Article  Google Scholar 

  22. Lee, S.W., Choi, W.Y., Kim, W.W., and Kim, Z.S., Genetic variation of Taxus cuspidata Sieb. et Zucc. in Korea, Silv. Genet., 2000, vol. 49, no. 3, pp. 124–130.

    Google Scholar 

  23. Cheng, B.-B., Zheng, Y.-Q., and Sun, Q.-W., Genetic diversity and population structure of Taxus cuspidata in the Changbai Mountains assessed by chloroplast DNA sequences and microsatellite markers, Biochem. Syst. Ecol., 2015, vol. 63, pp. 157–164. doi 10.1016/j.bse.2015.10.009

    Article  CAS  Google Scholar 

  24. Wheeler, N.C., Jech, K.S., Masters, S.A., et al., Genetic variation and parameter estimates in Taxus brevifolia (Pacific yew), Can. J. For. Res., 1995, vol. 25, pp. 1913–1927. doi 10.1139/x95-207

    Article  Google Scholar 

  25. Lewandowski, A., Burczyk, J., and Mejnartowicz, L., Genetic structure of English yew (Taxus baccata L.) in the Wierzchlas Reserve: implications for genetic conservation, For. Ecol. Manage., 1995, vol. 73, pp. 221–227. doi 10.1016/0378-1127(94)03477-E

    Article  Google Scholar 

  26. González-Martínez, S.C., Dubreuil, M., Riba, M., et al., Spatial genetic structure of Taxus baccata L. in the western Mediterranean Basin: past and present limits to gene movement over a broad geographic scale, Mol. Phylogenet. Evol., 2010, vol. 55, pp. 805–815. doi 10.1016/j.ympev.2010.03.001

    Article  PubMed  Google Scholar 

  27. Dubreuil, M., Riba, M., Santiago, C., et al., Genetic effects of chronic habitat fragmentation revisited: strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability, Am. J. Bot., 2010, vol. 97, no. 2, pp. 303–310. doi 10.3732/ajb.0900148

    Google Scholar 

  28. Senneville, S., Beaulieu, J., Daoust, G., et al., Evidence for low genetic diversity and metapopulation structure in Canada yew (Taxus canadensis): considerations for conservation, Can. J. For. Res., 2001, vol. 31, pp. 110–116. doi 10.1139/cjfr-31-1-110

    Google Scholar 

  29. Poudel, R.C., Möller, M., Li, D.-Z., et al., Genetic diversity, demographical history and conservation aspects of the endangered yew tree Taxus contorta (syn. Taxus fuana) in Pakistan, Tree Genet. Genomes, 2014, vol. 10, no. 3, pp. 653–665. doi 10.1007/s11295-014-0711-7

    Google Scholar 

  30. Gao, L.M., Möller, M., Zhang, X.-M., et al., High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam, Mol. Ecol., 2007, vol. 16, pp. 4684–4698. doi 10.1111/j.1365-294X.2007.03537.x

    Article  CAS  PubMed  Google Scholar 

  31. Liu, J., Möller, M., Provan, J., et al., Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot, New Phytol., 2013, vol. 199, no. 3, pp. 1093–1108. doi 10.1111/nph.12336

    Article  PubMed  Google Scholar 

  32. Zhang, D.-Q. and Zhou, N., Genetic diversity and population structure of the endangered conifer Taxus wallichiana var. mairei (Taxaceae) revealed by Simple Sequence Repeat (SSR) markers, Biochem. Syst. Ecol., 2013, vol. 49, pp. 107–114. doi 10.1016/j.bse.2013.03.030

    Article  CAS  Google Scholar 

  33. Miao, Y.C., Lang, X.D., Zhang, Z.Z., and Su, J.R., Phylogeography and genetic effects of habitat fragmentation on endangered Taxus yunnanensis in southwest China as revealed by microsatellite data, Plant Biol., 2014, vol. 16, pp. 365–374. doi 10.1111/plb.12059

    Article  CAS  PubMed  Google Scholar 

  34. Collins, D., Mill, R.R., and Möller, M., Species separation of Taxus baccata, T. canadensis, and T. cuspidata (Taxaceae) and origins of their reputed hybrids from RAPD and cpDNA data, Am. J. Bot., 2003, vol. 90, no. 2, pp. 175–182. doi 10.3732/ajb.90.2.175

    Article  CAS  PubMed  Google Scholar 

  35. So, S., Hwang, Y., Lee, C., et al., Taxonomic position of Taxus cuspidata var. latifolia endemic to Ulleung Island, Korean J. Pl. Taxon., 2013, vol. 43, no. 1, pp. 46–55. doi 10.11110/kjpt.2013.43.1.46

    Article  Google Scholar 

  36. Hao, D.C., Xiao, P.G., Huang, B., et al., Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences, Plant Syst. Evol., 2008, vol. 276, pp. 89–104. doi 10.1007/s00606-008-0069-0

    Article  CAS  Google Scholar 

  37. Hao, D.C., Huang, B., and Yang, L., Phylogenetic relationships of the genus Taxus inferred from chloroplast intergenic spacer and nuclear coding DNA, Biol. Pharm. Bull., 2008, vol. 31, no. 2, pp. 260–265.

    Article  CAS  Google Scholar 

  38. Hao, D.C., Huang, B.L., Chen, S.L., and Mu, J., Evolution of the chloroplast trnL–trnF region in the gymnosperm lineages Taxaceae and Cephalotaxaceae, Biochem. Genet., 2009, vol. 47, pp. 351–369. doi 10.1007/s10528-009-9233-7

    Article  CAS  Google Scholar 

  39. Liu, J., Provan, J., Gao, L.-M., and Li, D.-Z., Sampling strategy and potential utility of indels for DNA barcoding of closely related plant species: a case study in Taxus, Int. J. Mol. Sci., 2012, vol. 13, no. 7, pp. 8740–8751. doi 10.3390/ijms13078740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Y., Ma, J., Yang, B., et al., The complete chloroplast genome sequence of T. chinensis var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species, Gene, 2014, vol. 540, pp. 201–209. doi 10.1016/j.gene.2014.02.037

    Article  CAS  PubMed  Google Scholar 

  41. Anderson, E.D. and Owens, J.N., Megagametophyte development, fertilization, and cytoplasmic inheritance in Taxus brevifolia, Int. J. Pl. Sci., 1999, vol. 160, pp. 459–469.

    Google Scholar 

  42. Artyukova, E.V., Kholina, A.B., Kozyrenko, M.M., and Zhuravlev, Yu.N., Analysis of genetic variation in rare endemic species Oxytropis chankaensis Jurtz. (Fabaceae) using RAPD markers, Russ. J. Genet., 2004, vol. 40, no. 7, pp. 710–716.

  43. Taberlet, P., Gielly, L., Pautou, G., and Bouvet, J., Universal primers for amplification of three non-coding regions of chloroplast DNA, Plant Mol. Biol., 1991, vol. 17, no. 5, pp. 1105–1109.

    Article  CAS  PubMed  Google Scholar 

  44. Shaw, J., Lickey, E.B., Beck, J.T., et al., The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis, Am. J. Bot., 2005, vol. 92, pp. 142–166. doi 10.3732/ajb.92.1.142

    Article  CAS  PubMed  Google Scholar 

  45. Bonfeld, J.K., Smith, K.F., and Staden, R., A new DNA sequence assembly program, Nucleic Acids Res., 1995, vol. 23, pp. 4992–4999. doi 10.1093/nar/23.24.4992

    Article  Google Scholar 

  46. Gouy, M., Guindon, S., and Gascuel, O., SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol. Biol. Evol., 2010, vol. 27, pp. 221–224. doi 10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  47. Excoffier, L. and Lischer, H.E.L., Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564–567. doi 10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  48. Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, no. 11, pp. 1451–1452. doi 10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  49. Bandelt, H.-J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37–48.

    Article  CAS  PubMed  Google Scholar 

  50. Gaudeul, M., Taberlet, P., and Till-Bottraud, I., Genetic diversity in an endangered alpine plant,Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers, Mol. Ecol., 2000, vol. 9, pp. 1625–1637. doi 10.1046/j.1365-294x.2000.01063.x

    CAS  PubMed  Google Scholar 

  51. Nybom, H., Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants, Mol. Ecol., 2004, vol. 13, pp. 1143–1155. doi 10.1111/j.1365-294X.2004.02141.x

    Article  CAS  PubMed  Google Scholar 

  52. Golubeva, L.V. and Karaulova, L.P., Rastitel’nost’ i klimatostratigrafiya pleistotsena i golotsena Dal’nego Vostoka (Vegetation and Climatic Stratigraphy of the Pleistocene and Holocene of the Far East), Moscow: Nauka, 1983.

    Google Scholar 

  53. Hamrick, J.L. and Godt, M.J.W., Effects of life history traits on genetic diversity in plant species, Philos. Trans. R. Soc., B, 1996, vol. 351, pp. 1291–1298. doi 10.1098/rstb.1996.0112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Kozyrenko.

Additional information

Original Russian Text © M.M. Kozyrenko, E.V. Artyukova, E.A. Chubar, 2017, published in Genetika, 2017, Vol. 53, No. 8, pp. 911–921.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyrenko, M.M., Artyukova, E.V. & Chubar, E.A. Genetic diversity and population structure of Taxus cuspidata Sieb. et Zucc. ex Endl. (Taxaceae) in Russia according to data of the nucleotide polymorphism of intergenic spacers of the chloroplast genome. Russ J Genet 53, 865–874 (2017). https://doi.org/10.1134/S1022795417070079

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417070079

Keywords

Navigation