Skip to main content
Log in

Importance of DNA methylation in the inheritance of radiation-induced aberrant expression of microRNA

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

We studied microRNA gene expression in HeLa cells following exposure for 6 h and 8 days to Co60 gamma rays at a dose of 4 Gy using an approach of large-scale parallel DNA sequencing. We identified 12 microRNAs with aberrant expression which were maintained in cell generations. The analysis of radiation-induced aberrant expression of pre-microRNAs made it possible to assess the importance of nuclear and cytoplasmic stages of microRNA biogenesis for preservation of its aberrant expression. On cell treatment by 5-azacytidine, aberrant expression was maintained only in two microRNAs: miR-21-3p and miR-422a, which demonstrated an increase in expression. Radiation-induced decrease in expression in ten examined microRNAs was dependent on DNA demethylation. At the same time, expression in a microRNA set, which demonstrated inheritable alteration of the expression after gamma-radiation exposure in the untreated cells, was not dependent or was weakly dependent on DNA methylation. The obtained results suggest that ionizing radiation induces aberrant DNA methylation, which affects inherited expression changes in microRNAs in cell generations after exposure to the mutagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, B.B. and Elledge, S.J, The DNA damage response: putting checkpoints in perspective, Nature, 2000, vol. 408, no. 6811, pp. 433–439. doi 10.1038/35044005

    Article  CAS  PubMed  Google Scholar 

  2. Petrini, J.H. and Stracker, T.H, The cellular response to DNA double-strand breaks: defining the sensors and mediators, Trends Cell. Biol., 2003, vol. 13, no. 9, pp. 458–462. doi 10.1016/S0962-8924(03)00170-3

    Article  CAS  PubMed  Google Scholar 

  3. Uziel, T., Lerenthal, Y., Moyal, L., et al., Requirement of the MRN complex for ATM activation by DNA damage, EMBO J., 2003, vol. 22, no. 20, pp. 5612–5621. doi 10.1093/emboj/cdg541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Falck, J., Coates, J., and Jackson, S.P, Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage, Nature, 2005, vol. 434, no. 7033, pp. 605–611. doi 10.1038/nature03442

    CAS  PubMed  Google Scholar 

  5. Weterings, E. and Chen, D.J., DNA-dependent protein kinase in nonhomologous end joining: a lock with multiple keys, J. Cell Biol., 2007, vol. 179, no. 2, pp. 183–186. doi 10.1083/jcb.200705106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mahaney, B.L., Meek, K., and Lees-Miller, S.P, Repair of ionizing radiation-induced DNA doublestrand breaks by non-homologous end-joining, Biochem. J., 2009, vol. 417, no. 3, pp. 639–650. doi 10.1042/BJ20080413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matsuoka, S., Ballif, B.A., Smogorzewska, A., et al., ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage, Science, 2007, vol. 316, no. 5828, pp. 1160–1166. doi 10.1126/science.1140321

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, X., Wan, G., Berger, F.G., et al., The ATM kinase induces microRNA biogenesis in the DNA damage response, Mol. Cell, 2011, vol. 41, no. 4, pp. 371–383. doi 10.1016/j.molcel.2011.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diederichs, S. and Haber, D.A, Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression, Cell, 2007, vol. 131, no. 6, pp. 1097–1108. doi 10.1016/j.cell.2007.10.032

    Article  CAS  PubMed  Google Scholar 

  10. Lee, Y., Ahn, C., Han, J., et al., The nuclear RNase III Drosha initiates microRNA processing, Nature, 2003, vol. 425, no. 6956, pp. 415–419. doi 10.1038/nature01957

    Article  CAS  PubMed  Google Scholar 

  11. Connerty, P., Ahadi, A., and Hutvagner, G., RNA binding proteins in the miRNA pathway, Int. J. Mol. Sci., 2015, vol. 17, no. 1, pp. 31. doi 10.3390/ijms17010031

    Article  PubMed Central  Google Scholar 

  12. Kim, V.N., MicroRNA biogenesis: coordinated cropping and dicing, Nat. Rev. Mol. Cell Biol., 2005, vol. 6, no. 5, pp. 376–385. doi 10.1038/nrm1644

    Article  CAS  PubMed  Google Scholar 

  13. Meijer, H.A., Smith, E.M., and Bushell, M, Regulation of miRNA strand selection: follow the leader, Biochem. Soc. Trans., 2014, vol. 42, no. 4, pp. 1135–1140. doi 10.1042/BST20140142

    Article  CAS  PubMed  Google Scholar 

  14. Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 2009, vol. 19, no. 1, pp. 92–105. doi 10.1101/gr.082701.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bueno, M.J. and Malumbres, M., MicroRNAs and the cell cycle, Biochim. Biophys. Acta, 2011, vol. 1812, no. 5, pp. 592–601. doi 10.1016/j.bbadis.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  16. Tessitore, A., Cicciarelli, G., Del Vecchio, F., et al., MicroRNAs in the DNA Damage/Repair Network and cancer, Int. J. Genomics, 2014, no. 2014, p. 820248. doi 10.1155/2014/820248

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ouyang, L., Shi, Z., Zhao, S., et al., Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis, Cell Prolif., 2012, vol. 45, no. 6, pp. 487–498. doi 10.1111/j.1365–2184.2012.00845.x

    Article  CAS  Google Scholar 

  18. Vincent, K., Pichler, M., Lee, G.W., and Ling, H, MicroRNAs, genomic instability and cancer, Int. J. Mol. Sci., 2014, vol. 15, no. 8, pp. 14475–14491. doi 10.3390/ijms150814475

    Article  CAS  Google Scholar 

  19. Moradi, S., Asgari, S., and Baharvand, H, Concise review: harmonies played by microRNAs in cell fate reprogramming, Stem Cells, 2014, vol. 32, no. 1, pp. 3–15. doi 10.1002/stem.1576

    Article  CAS  PubMed  Google Scholar 

  20. Honda, M., Kuwano, Y., Katsuura-Kamano, S., et al., Chronic academic stress increases a group of microRNAs in peripheral blood, PLoS One, 2013, vol. 8, no. 10. e75960. doi 10.1371/journal.pone.0075960

    Article  Google Scholar 

  21. Tarasov, V.A., Matishov, D.G., Shin, E.F., et al., Inheritable changes in miRNAs expression in HeLa cells after X-ray and mitomycin C treatment, Russ. J. Genet., 2014, vol. 50, no. 8, pp. 798–806. doi 10.7868/S0016675814080098

    Article  CAS  Google Scholar 

  22. Chen, R.J., Kelly, G., Sengupta, A., et al., MicroRNAs as biomarkers of resilience or vulnerability to stress, Neuroscience, 2015, no. 305, pp. 36–48. doi 10.1016/j.neuroscience.2015.07.045

    Article  CAS  PubMed  Google Scholar 

  23. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction, Anal. Biochem., 1987, vol. 162, pp. 156–159. doi 10.1016/0003-2697(87)90021-2

    Article  CAS  PubMed  Google Scholar 

  24. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  25. Robinson, M.D., McCarthy, D.J., and Smyth, G.K., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 2010, vol. 26, pp. 139–140. doi 10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  26. Robinson, M.D. and Smyth, G.K, Small sample estimation of negative binomial dispersion, with applications to SAGE data, Biostatistics, 2008, vol. 9, pp. 321–332. doi 10.1093/biostatistics/kxm030

    Google Scholar 

  27. Robinson, M.D. and Oshlack, A., A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biol., 2010, vol. 11, p. R25. doi 10.1186/gb-2010-11-3-r25

    Article  PubMed  PubMed Central  Google Scholar 

  28. McCarthy, D.J., Chen, Y., and Smyth, G.K, Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation, Nucleic Acids Res., 2012, vol. 40, pp. 4288–4297. doi 10.1093/nar/gks042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Benjamini, Y. and Hochberg, Y, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc., Ser. B, 1995, vol. 57, no. 1, pp. 289–300. doi 10.2307/2346101

    Google Scholar 

  30. Metheetrairut, C. and Slack, F.J., MicroRNAs in the ionizing radiation response and in radiotherapy, Curr. Opin. Genet. Dev., 2013, vol. 23, no. 1, pp. 12–19. doi 10.1016/j.gde.2013.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaudhry, M.A., Real-time PCR analysis of micro-RNA expression in ionizing radiation-treated cells, Cancer Biother. Radiopharm., 2009, vol. 24, no. 1, pp. 49–56. doi 10.1089/cbr.2008.0513

    Article  CAS  PubMed  Google Scholar 

  32. Chaudhry, M.A., Omaruddin, R.A., Brumbaugh, C.D., et al., Identification of radiation-induced microRNA transcriptome by next-generation massively parallel sequencing, J. Radiat. Res., 2013, vol. 54, no. 5, pp. 808–822. doi 10.1093/jrr/rrt014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chaudhry, M.A., Omaruddin, R.A., Kreger, B., et al., Micro RNA responses to chronic or acute exposures to low dose ionizing radiation, Mol. Biol. Rep., 2012, vol. 39, no. 7, pp. 7549–7558. doi 10.1007/s11033-012- 1589-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dickey, J.S., Zemp, F.J., Martin, O.A., and Kovalchuk, O, The role of miRNA in the direct and indirect effects of ionizing radiation, Radiat. Environ. Biophys., 2011, vol. 50, no. 4, pp. 491–499. doi 10.1007/s00411-011-0386-5

    Article  CAS  PubMed  Google Scholar 

  35. Huumonen, K., Korkalainen, M., Viluksela, M., et al., Role of microRNAs and DNA methyltransferases in transmitting induced genomic instability between cell generations, Front. Public Health, 2014, no. 2, p. 139. doi 10.3389/fpubh.2014.00139

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tarasov, V.A., Boiko, N.V., Makhotkin, M.A., et al., The miRNA aberrant expression dependence on DNA methylation in HeLa cells treated with mitomycin C, Russ. J. Genet., 2016, vol. 52, no. 11, pp. 1117–1123. doi 10.1134/S1022795416110156

    Article  CAS  Google Scholar 

  37. Hahn, A.T., Jones, J.T., and Meyer, T, Quantitative analysis of cell cycle phase durations and PC12 differentiation using fluorescent biosensors, Cell Cycle, 2009, vol. 8, no. 7, pp. 1044–1052. doi 10.4161/cc.8.7.8042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ha, M. and Kim, V.N, Regulation of microRNA biogenesis, Nat. Rev. Mol. Cell Biol., 2014, vol. 15, no. 8, pp. 509–524. doi 10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  39. Bird, A., DNA methylation patterns and epigenetic memory, Genes Dev., 2002, vol. 16, no. 1, pp. 6–21. doi 10.1101/gad.947102

    Article  CAS  PubMed  Google Scholar 

  40. Lander, E.S., Linton, L.M., Birren, B., et al., Initial sequencing and analysis of the human genome, Nature, 2001, vol. 409, no. 6822, pp. 860–921. doi 10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  41. Venter, J.C., Adams, M.D., Myers, E.W., et al., The sequence of the human genome, Science, 2001, vol. 291, no. 5507, pp. 1304–1351. doi 10.1126/science. 1058040

    Article  CAS  PubMed  Google Scholar 

  42. Li, E., Beard, C., and Jaenisch, R, Role for DNA methylation in genomic imprinting, Nature, 1993, vol. 366, no. 6453, pp. 362–365. doi 10.1038/366362a0

    Article  CAS  PubMed  Google Scholar 

  43. Kass, S.U., Landsberger, N., and Wolffe, A.P., DNA methylation directs a time-dependent repression of transcription initiation, Curr. Biol., 1997, vol. 7, no. 3, pp. 157–165. doi 10.1016/S0960-9822(97)70086-1

  44. Suzuki, H.I., Yamagata, K., Sugimoto, K., et al., Modulation of microRNA processing by p53, Nature, 2009, vol. 460, no. 7254, pp. 529–533. doi 10.1038/nature08199

    Article  CAS  PubMed  Google Scholar 

  45. Fukuda, T., Yamagata, K., Fujiyama, S., et al., DEADbox RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs, Nat. Cell Biol., 2007, vol. 9, no. 5, pp. 604–611. doi 10.1038/ncb1577

    Article  CAS  PubMed  Google Scholar 

  46. Trabucchi, M., Briata, P., Garcia-Mayoral, M., et al., The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs, Nature, 2009, vol. 459, no. 7249, pp. 1010–1014. doi 10.1038/nature08025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kawahara, Y. and Mieda-Sato, A., TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 9, pp. 3347–3352. doi 10.1073/pnas.1112427109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sui, J., Lin, Y.F., Xu, K., et al., DNA-PKcs phosphorylates hnRNP-A1 to facilitate the RPA-to-POT1 switch and telomere capping after replication, Nucleic Acids Res., 2015, vol. 43, no. 12, pp. 5971–5983. doi 10.1093/nar/gkv539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guil, S. and Cáceres, J.F, The multifunctional RNAbinding protein hnRNP A1 is required for processing of miR-18a, Nat. Struct. Mol. Biol., 2007, vol. 14, no. 7, pp. 591–596. doi 10.1038/nsmb1250

    Article  CAS  PubMed  Google Scholar 

  50. Michlewski, G. and Cáceres, J.F, Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis, Nat. Struct. Mol. Biol., 2010, vol. 17, no. 8, pp. 1011–1018. doi 10.1038/nsmb.1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ustianenko, D., Hrossova, D., Potesil, D., et al., Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs, RNA, 2013, vol. 19, no. 12, pp. 1632–1638. doi 10.1261/rna.040055.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xhemalce, B., Robson, S.C., and Kouzarides, T, Human RNA methyltransferase BCDIN3D regulates microRNA processing, Cell, 2012, vol. 151, no. 2, pp. 278–288. doi 10.1016/j.cell.2012.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saito, Y., Liang, G., Egger, G., et al., Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells, Cancer Cell, 2006, vol. 9, no. 6, pp. 435–443. doi 10.1016/j.ccr.2006.04.020

    Article  CAS  PubMed  Google Scholar 

  54. Strmsek, Z. and Kunej, T., MicroRNA silencing by DNA methylation in human cancer: a literature analysis, Non-Coding RNA, 2015, no. 1, pp. 44–52. doi 10.3390/ncrna1010044

    Article  Google Scholar 

  55. Antwih, D.A., Gabbara, K.M., Lancaster, W.D., et al., Radiation-induced epigenetic DNA methylation modification of radiation-response pathways, Epigenetics, 2013, vol. 8, no. 8, pp. 839–848. doi 10.4161/epi.25498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Croce, C.M, Causes and consequences of microRNA dysregulation in cancer, Nat. Rev. Genet., 2009, vol. 10, no. 10, pp. 704–714. doi 10.1038/nrg2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pink, R.C., Samuel, P., Massa, D., et al., The passenger strand, miR-21–3p, plays a role in mediating cisplatin resistance in ovarian cancer cells, Gynecol. Oncol., 2015, vol. 137, no. 1, pp. 143–151. doi 10.1016/j.ygyno.2014.12.042

    CAS  Google Scholar 

  58. Zhang, J., Yang, Y., Yang, T., et al., Double-negative feedback loop between microRNA-422a and forkhead box (FOX)G1/Q1/E1 regulates hepatocellular carcinoma tumor growth and metastasis, Hepatology, 2015, vol. 61, no. 2, pp. 561–573. doi 10.1002/hep.27491

    Article  CAS  PubMed  Google Scholar 

  59. Yu, S., Lu, Z., Liu, C., et al., miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer, Cancer Res., 2010, vol. 70, no. 14, pp. 6015–6025. doi 10.1158/0008-5472.CAN-09-4531

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Y., Huang, J.W., Calses, P., et al., MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition, Cancer Res., 2012, vol. 72, no. 16, pp. 4037–4046. doi 10.1158/0008-5472.CAN-12-0103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, L., Chang, L., Li, Z., et al., miR-99a and -99b inhibit cervical cancer cell proliferation and invasion by targeting mTOR signaling pathway, Med. Oncol., 2014, vol. 31, no. 5, p. 934. doi 10.1007/s12032-014-0934-3

    Article  PubMed  Google Scholar 

  62. Ng, W.L., Yan, D., Zhang, X., et al., Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J, DNA Repair (Amsterdam), 2010, vol. 9, no. 11, pp. 1170–1175. doi 10.1016/j.dnarep.2010.08.007

    Article  CAS  Google Scholar 

  63. Jin, Y., Tymen, S.D., Chen, D., et al., MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing, PLoS One, 2013, vol. 8, no. 5. e64434. doi 10.1371/journal.pone.0064434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu, L., Li, Y., Yan, D., et al., MicroRNA-183 inhibits gastric cancer proliferation and invasion via directly targeting Bmi-1, Oncol. Lett., 2014, vol. 8, no. 5, pp. 2345–2351. doi 10.3892/ol.2014.2504

    PubMed  PubMed Central  Google Scholar 

  65. Epis, M.R., Giles, K.M., Barker, A., et al., miR-331–3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer, J. Biol. Chem., 2009, vol. 284, no. 37, pp. 24696–24704. doi 10.1074/jbc. M109.030098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nie, J., Liu, L., Zheng, W., et al., MicroRNA-365,down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2, Carcinogenesis, 2012, vol. 33, no. 1, pp. 220–225. doi 10.1093/carcin/bgr245

    CAS  Google Scholar 

  67. Wang, J., Wang, X., Wu, G., et al., MiR-365b-3p,down-regulated in retinoblastoma,regulates cell cycle progression and apoptosis of human retinoblastoma cells by targeting PAX6, FEBS Lett., 2013, vol. 587, no. 12, pp. 1779–1786. doi 10.1016/j.febslet.2013.04.029

    Article  CAS  PubMed  Google Scholar 

  68. Hu, Z., Zhao, J., Hu, T., et al., miR-501–3p mediates the activity-dependent regulation of the expression of AMPA receptor subunit GluA1, J. Cell Biol., 2015, vol. 208, no. 7, pp. 949–959. doi 10.1083/jcb.201404092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bai, Y., Li, J., Li, J., et al., MiR-615 inhibited cell proliferation and cell cycle of human breast cancer cells by suppressing of AKT2 expression, Int. J. Clin. Exp. Med., 2015, vol. 8, no. 3, pp. 3801–3808.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, M., Yang, Y., He, Z.X., et al., MicroRNA-561 promotes acetaminophen-induced hepatotoxicity in HepG2 cells and primary human hepatocytes through downregulation of the nuclear receptor corepressor dosage-sensitive sex-reversal adrenal hypoplasia congenital critical region on the X chromosome, gene 1 (DAX-1), Drug Metab. Dispos., 2014, vol. 42, no. 1, pp. 44–61. doi 10.1124/dmd.113.052670

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Makhotkin.

Additional information

Original Russian Text © V.A. Tarasov, M.A. Makhotkin, N.V. Boyko, E.F. Shin, M.G. Tyutyakina, I.E. Chikunov, A.V. Naboka, A.N. Mashkarina, A.A. Kirpiy, D.G. Matishov, 2017, published in Genetika, 2017, Vol. 53, No. 5, pp. 551–561.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.A., Makhotkin, M.A., Boyko, N.V. et al. Importance of DNA methylation in the inheritance of radiation-induced aberrant expression of microRNA. Russ J Genet 53, 551–560 (2017). https://doi.org/10.1134/S1022795417050118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417050118

Keywords

Navigation