Skip to main content
Log in

Advanced approaches to studying the population diversity of marine fishes: New opportunities for fisheries control and management

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Recent conceptual and technological advances now enable fisheries geneticists to detect and monitor the dynamics and distribution of marine fish populations more effectively than ever before. Information on the extent of genetically-based divergence among populations, so-called “population diversity”, is crucial in the quest to manage exploited living resources sustainably since it endows evolutionary potential in the face of environmental change. The generally limited dialogue between scientists, fisheries managers and policy makers, however, continues to constrain integration of population genetic data into tangible policy applications. Largely drawing on the approach and outputs from a European research project, FishPopTrace, we provide an example how the uncovering of marine fish population diversity enables players from genetics, forensics, management and the policy realm to generate a framework tackling key policy-led questions relating to illegal fishing and traceability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sinclair, M., Marine Populations: An Essay on Population Regulation and Speciation, Seattle: Univ. Washington Press, 1988.

    Google Scholar 

  2. Carvalho, G.R. and Hauser, L., Molecular Genetics and the Stock Concept in Fisheries, Special Issue of Reviews in Fish and Fisheries Biology, Carvalho, G.R. and Pitcher, T.J., Eds., 1994, vol. 4, pp. 351–373.

  3. Hammer, C. and Zimmermann, C., The Role of Stock Identification in Formulating Fishery Management Advice, in Stock Identification Methods: Applications in Fishery Science, Cadrin, S.X., Friedland, K.D., and Waldman, J.R., Eds., Elsevier, 2005, pp. 631–658.

  4. Hauser, L. and Carvalho, G.R., Paradigm Shifts in Marine Fisheries Genetics: Ugly Hypotheses Slain by Beautiful Facts, Fish Fisheries, 2008, vol. 9, no. 4, pp. 333–362.

    Article  Google Scholar 

  5. Mariani, S., Hutchinson, W.F., Hatfield, E.M.C., et al., North Sea Herring Population Structure Revealed by Microsatellite Analysis, Mar. Ecol. Progress Ser., 2005, vol. 303, p. 245.

    Article  Google Scholar 

  6. Cassista, M.C. and Hart, M.W., Spatial and Temporal Genetic Homogeneity in the Arctic Surfclam (Mactromeris polynyma), Mar. Biol., 2007, vol. 152, pp. 569–579.

    Article  Google Scholar 

  7. Ruzzante, D.E., Wroblewski, J.S., Taggart, C.T., et al., Bay-Scale Population Structure in Coastal Atlantic Cod in Labrador and Newfoundland, Canada, J. Fish Biol., 2000, vol. 56, pp. 431–447.

    Article  CAS  Google Scholar 

  8. Jorgensen, H.B.H., Hansen, M.M., Bekkevold, D., et al., Marine Landscapes and Population Genetic Structure of Herring (Clupea harengus L.) in the Baltic Sea, Mol. Ecol., 2005, vol. 14, pp. 3219–3234.

    Article  PubMed  Google Scholar 

  9. Knutsen, H., Jorde, P.E., Andre, C., and Stenseth, N.C., Fine-Scaled Geographical Population Structuring in a Highly Mobile Marine Species: The Atlantic Cod, Mol. Ecol., 2003, vol. 12, pp. 385–394.

    Article  PubMed  CAS  Google Scholar 

  10. Campana, S.E., Otolith Elemental Composition as a Natural Marker of Fish Stocks, in Stock Identification Methods: Applications in Fishery Science, Cadrin, S.X., Friedland, K.D., and Waldman, J.R., Eds., Elsevier, 2005, pp. 227–246.

  11. Frankham, R., Stress and Adaptation in Conservation Genetics, J. Evol. Biol., 2005, vol. 18, pp. 750–755.

    Article  PubMed  CAS  Google Scholar 

  12. Elton, C.S., Periodic Fluctuations in the Numbers of Animals: Their Causes and Effects, J. Exp. Biol., 1924, vol. 2, pp. 119–163.

    Google Scholar 

  13. Jennings, S., Kaiser, M.J., and Reynolds, J.D., Marine Fisheries Ecology, Malden: Blackwell, 2001.

    Google Scholar 

  14. Hallerman, E.M., Population Genetics: Principles and Applications for Fisheries Scientists, Bethesda: American Fisheries Society, 2003.

    Google Scholar 

  15. Leis, J.M., van Herwerden, L., and Patterson, H.M., Estimating Connectivity in Marine Fish: What Works Best?, Oceanogr. Mar. Biol., 2010, vol. 49, pp. 193–234.

    Google Scholar 

  16. Conover, D.O., Clarke, L.M., Munch, S.B., and Wagner, G.N., Spatial and Temporal Scales of Adaptive Divergence in Marine Fishes and the Implications for Conservation, J. Fish Biol., 2006, vol. 69, pp. 21–47.

    Article  Google Scholar 

  17. Larsen, P.F., Nielsen, E.E., Williams, T.D., et al., Adaptive Differences in Gene Expression in European Flounder (Platichthys flesus), Mol. Ecol., 2007, vol. 16, pp. 4674–4683.

    Article  PubMed  CAS  Google Scholar 

  18. Bonin, A., Nicole, F., Pompanon, F., et al., Population Adaptive Index: A New Method to Help Measure Intraspecific Genetic Diversity and Prioritize Populations for Conservation, Conservation Biol., 2007, vol. 21, pp. 697–708.

    Article  Google Scholar 

  19. Nelson, K. and Soule, M., Genetical Conservation of Exploited Fishes, Population Genetics and Fishery Management, Ryman, N., and Utter, F.M., Eds., Seattle: Washington Univ. Press, 1987, pp. 345–368.

    Google Scholar 

  20. Michener, W.K., Baerwald, T.J., Firth, P., et al., Defining and Unraveling Biocomplexity, BioScience, 2001, vol. 51, pp. 1018–1023.

    Article  Google Scholar 

  21. Mitchell, D.M., Biocomplexity and Metapopulation Dynamics of Pacific Herring (Clupea pallasii) in Puget Sound, Master’s Thesis, Washington, DC: University of Washington, 2006.

    Google Scholar 

  22. Ruzzante, D.E., Mariani, S., Bekkevold, D., et al., Biocomplexity in a Highly Migratory Pelagic Marine Fish, Atlantic Herring, Proc. R. Soc. London, Ser. B: Biol. Sci., 2006, vol. 273, pp. 1459–1464.

    Article  Google Scholar 

  23. Hilborn, R., Quinn, T.P., Schindler, D.E., and Rogers, D.E., Biocomplexity and Fisheries Sustainability, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 6564–6568.

    Article  PubMed  CAS  Google Scholar 

  24. Kochzius, M., Trends in Fishery Genetics, The Future of Fisheries Science in North America, Beamish, R.J. and Rothschild, B.J., Eds., Springer-Verlag, London, 2008, 1st Ed., pp. 451–491.

    Google Scholar 

  25. Rehbein, H., Identification of Fish Species by Protein- and DNA-Analysis, Authenticity of Species in Meat and Seafood Products, Perez-Martin, R. and Soleto, C.G., Eds., Association “International Congress on Authenticity of Species in Meat and Seafood Products”, 2003.

  26. Taylor, W.J., Patel, N.P., and Jones, J.L., Antibody-Based Methods for Assessing Seafood Authenticity, Food Agric. Immunol., 1994, vol. 6, no. 3, pp. 305–314.

    Article  Google Scholar 

  27. Nielsen, E., Hemmer-Hansen, J., Poulsen, N., et al., Genomic Signatures of Local Directional Selection in a High Gene Flow Marine Organism, the Atlantic Cod (Gadus morhua), BMC Evol. Biol., 2009, vol. 9, p. 276.

    Article  PubMed  Google Scholar 

  28. Stokstad, E., To Fight Illegal Fishing, DNA Gets Local, Science, 2010, vol. 330, pp. 1468–1469.

    Article  PubMed  CAS  Google Scholar 

  29. Sobrino, O.B., Brioan, M., and Carracedo, A., SNPs in Forensic Genetics: A Review on SNP Typing Methodologies, Forensic Sci. Int., 2005, vol. 154, pp. 181–194.

    Article  PubMed  CAS  Google Scholar 

  30. Zelenina, D.A., Khrustaleva, A.M., Volkov, A.A., et al., A Case Study of Two Genetic Markers for Inter-Laboratory Collaboration: SNPs Provide Transportability without Standardization, NPAFC Doc., 2005, no. 913, p. 14.

  31. Metzker, M.L., Sequencing Technologies-the Next Generation, Nat. Rev. Genet., 2010, vol. 11, pp. 31–46.

    Article  PubMed  CAS  Google Scholar 

  32. FAO Fisheries and Aquaculture Department: Combating Illegal, Unreported and Unregulated Fishing through Monitoring Control and Surveillance, Port State Measures and Other Means. Meeting Document COFI/2007/7, Rome: Food and Agriculture Organization of the United Nations, 2007.

  33. Ogden, R., Dawnay, N., and McEwing, R., Wildlife DNA Forensics-Bridging the Gap between Conservation Genetics and Law Enforcement, Endangered Species Res., 2009, vol. 9, pp. 179–195.

    Article  Google Scholar 

  34. Bartlett, S.E. and Davidson, W.S., Identification of Thunnus Tuna Species by the Polymerase Chain Reaction and Direct Sequence Analysis of Their Mitochondrial Cytochrome b Genes, J. Fisheries Aquatic Sci., 1991, vol. 48, pp. 309–317.

    Article  CAS  Google Scholar 

  35. Bartlett, S.E. and Davidson, W.S., FINS (Forensically Informative Nucleotide Sequencing): A Procedure for Identifying the Animal Origin of Biological Specimens, BioTechniques, 1992, vol. 12, pp. 408–411.

    PubMed  CAS  Google Scholar 

  36. Ogden, R., Fisheries Forensics: The Use of DNA Tools for Improving Compliance, Traceability and Enforcement in the Fishing Industry, Fish Fisheries, 2008, vol. 9, pp. 462–472.

    Article  Google Scholar 

  37. Martinsohn, J.T. and Ogden, R., FishPopTrace-Developing SNP-Based Population Genetic Assignment Methods to Investigate Illegal Fishing, Forensic Sci. Int.: Genet. Suppl. Ser., 2009, vol. 2, no. 1, pp. 294–296.

    Article  Google Scholar 

  38. Verspoor, E., Zanzi, A., Gilbey, J., and Martinsohn, J.T., Pursuing the Establishment of a Meta-Database Cataloguing Molecular Data in the Field of Fish and Shell-fish Population Genetics, ICES WGAGFM Report, 2010. ICES CM 2010. SSGHIE:12, pp. 4–17.

  39. European Commission: Building a European Marine Knowledge Infrastructure: Roadmap for a European Marine Observation and Data Network (Commission Staff Working Document), Brussels: 07.04.2009. SEC(2009) 499 Final. pp. 1–69.

  40. European Council Regulation (EC) No 199/2008 of 25 February 2008 Concerning the Establishment of a Community Framework for the Collection, Management and Use of Data in the Fisheries Sector and Support for Scientific Advice Regarding the Common Fisheries Policy, Official J. Eur. Union, L 60, pp. 1–12.

  41. Galindo, H.M., Olson, D.B., and Palumbi, S.R., Seascape Genetics: A Coupled Oceanographic-Genetic Model Predicts Population Structure of Caribbean Corals, Curr. Biol., 2006, vol. 16, pp. 1622–1626.

    Article  PubMed  CAS  Google Scholar 

  42. Martinsohn, J.T., Deterring Illegal Activities in the Fisheries Sector: Genetics, Genomics, Chemistry and Forensics to Fight IUU Fishing and in Support of Fish Product Traceability, JRC Reference Reports: Scientific and Technical Research Series, Luxembourg: European Commission, 2011.

    Google Scholar 

  43. Anonymous, Human Genome at Ten: The Sequence Explosion, Nature, 2010, vol. 464, pp. 670–671.

  44. Hemmer-Hansen, J., Nielsen, E., Meldrup, D., and Mittelholzer, C., Identification of Single Nucleotide Polymorphisms in Candidate Genes for Growth and Reproduction in a Nonmodel Organism, the Atlantic Cod, Gadus morhua, Mol. Ecol. Resour., 2011, vol. 11,suppl. 1, pp. 71–80.

    Article  PubMed  CAS  Google Scholar 

  45. Carvalho, G.R., Evolutionary Aspects of Fish Distributions: Genetic Variability and Adaptation, J. Fish. Biol., 1993, vol. 43,suppl. A, pp. 53–73.

    Article  Google Scholar 

  46. Rowe, S., Hutchings, J.A., Skjaeraasen, J.E., and Bezanson, L., Morphological and Behavioral Correlates of Reproductive Success in Atlantic Cod Gadus morhua, Mar. Ecol. Proc. Ser., 2008, vol. 354, pp. 257–265.

    Article  Google Scholar 

  47. Neff, B.D., Genetic Paternity Analysis and Breeding Success in Bluegill Sunfish (Lepomis macrochiros), J. Hered., 2001, vol. 92, pp. 111–119.

    Article  PubMed  CAS  Google Scholar 

  48. Hutchings, J.A., Swain, D.P., Rowe, S., et al., Genetic Variation in Life-History Reaction Norms in a Marine Fish, Proc. R. Soc. London, Ser. B, 2007, vol. 274, pp. 1693–1699.

    Article  Google Scholar 

  49. Marcil, J., Swain, D.P., and Hutchings, J.A., Genetic and Environmental Components of Phenotypic Variation in Body Shape among Populations of Atlantic Cod (Gadus morhua L.), Biol. J. Linnean Soc., 2006, vol. 88, pp. 351–365.

    Article  Google Scholar 

  50. Bekkevold, D., Andre, C., Dahlgren, T.G., et al., Environmental Correlates of Population Differentiation in Atlantic Herring, Evolution, 2005, vol. 59, pp. 2656–2668.

    PubMed  Google Scholar 

  51. Hemmer-Hansen, J., Nielsen, E.E., Frydenberg, J., and Loeschcke, V., Adaptive Divergence in a High Gene Flow Environment: Hsc70 Variation in the European Flounder (Platichthys flesus L.), Heredity, 2007, vol. 99, pp. 592–600.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zelenina.

Additional information

Published in Russian in Genetika, 2011, Vol. 47, No.12, pp. 1629–1641.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelenina, D.A., Martinsohn, J.T., Ogden, R. et al. Advanced approaches to studying the population diversity of marine fishes: New opportunities for fisheries control and management. Russ J Genet 47, 1444–1455 (2011). https://doi.org/10.1134/S1022795411120179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411120179

Keywords

Navigation