Skip to main content
Log in

SAYP is a novel regulator of metazoan development

  • Molecular Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

SAYP is a dual-function transcriptional coactivator of RNA polymerase II. It is a metazoan-specific factor involved in different signaling pathways that control normal development. In Drosophila, SAYP is present in the organism from the early stages of development and participates in cell cycle synchronization at the blastoderm stage. SAYP is abundant in many embryonic cells and in imaginal discs of larvae and is crucial for oogenesis in adults. At the molecular level, SAYP serves as a basis for assembling the BTFly nuclear supercomplex consising of the Brahma and TFIID coactivators. We suppose that BTFly and other similar nuclear supercomplexes play an important role in ontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lemon, B. and Tjian, R., Orchestrated Response: A Symphony of Transcription Factors for Gene Control, Genes Dev., 2000, vol. 14, pp. 2551–2569.

    Article  CAS  PubMed  Google Scholar 

  2. Naar, A.M., Lemon, B.D., and Tjian, R., Transcriptional Coactivator Complexes, Annu. Rev. Biochem., 2001, vol. 70, pp. 475–501.

    Article  CAS  PubMed  Google Scholar 

  3. Taatjes, D.J., Marr, M.T., and Tjian, R., Regulatory Diversity among Metazoan Co-Activator Complexes, Nat. Rev. Mol. Cell Biol., 2004, vol. 5, pp. 403–410.

    Article  CAS  PubMed  Google Scholar 

  4. Shidlovskii, Y.V., Krasnov, A.N., Nikolenko, J.V., et al., A Novel Multidomain Transcription Coactivator SAYP Can also Repress Transcription in Heterochromatin, EMBO J., 2005, vol. 24, pp. 97–107.

    Article  CAS  PubMed  Google Scholar 

  5. Vorobyeva, N.E., Soshnikova, N.V., Nikolenko, J.V., et al., Transcription Coactivator SAYP Combines Chromatin Remodeler Brahma and Transcription Initiation Factor TFIID into a Single Supercomplex, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 27, pp. 11049–11054.

    Article  CAS  PubMed  Google Scholar 

  6. Georgiev, P.G., Identification of Mutations in Three Genes That Interact with zeste in the Control of White Gene Expression in Drosophila melanogaster, Genetics, 1994, vol. 138, pp. 733–739.

    CAS  PubMed  Google Scholar 

  7. Grzybowska, E.A., Wilczynska, A., and Siedlecki, J.A., Regulatory Functions of 3’UTRs, Biochem. Biophys. Res. Commun., 2001, vol. 288, pp. 291–295.

    Article  CAS  PubMed  Google Scholar 

  8. Aravin, A.A., Naumova, N.M., Tulin, A.V., et al., Double-Stranded RNA-Mediated Silencing of Genomic Tandem Repeats and Transposable Elements in the D. melanogaster Germline, Curr. Biol., 2001, vol. 11, pp. 1017–1027.

    Article  CAS  PubMed  Google Scholar 

  9. Muller, P., Kuttenkeuler, D., Gesellchen, V., et al., Identification of JAK/STAT Signalling Components by Genome-Wide RNA Interference, Nature, 2005, vol. 436, pp. 871–875.

    Article  PubMed  Google Scholar 

  10. Nybakken, K., Vokes, S.A., Lin, T.Y., et al., A Genome-Wide RNA Interference Screen in Drosophila melanogaster Cells for New Components of the Hh Signaling Pathway, Nat. Genet., 2005, vol. 37, pp. 1323–1332.

    Article  CAS  PubMed  Google Scholar 

  11. Chalkley, G.E., Moshkin, Y.M., Langenberg, K., et al., The Transcriptional Coactivator SAYP Is a Trithorax Group Signature Subunit of the PBAP Chromatin Remodeling Complex, Mol. Cell Biol., 2008, vol. 28, pp. 2920–2929.

    Article  CAS  PubMed  Google Scholar 

  12. Edgar, B.A., Sprenger, F., Duronio, R.J., et al., Distinct Molecular Mechanism Regulate Cell Cycle Timing at Successive Stages of Drosophila Embryogenesis, Genes Dev., 1994, vol. 8, pp. 440–452.

    Article  CAS  PubMed  Google Scholar 

  13. Ji, J.Y., Squirrell, J.M., and Schubiger, G., Both Cyclin B Levels and DNA-Replication Checkpoint Control the Early Embryonic Mitoses in Drosophila, Development, 2004, vol. 131, pp. 401–411.

    Article  CAS  PubMed  Google Scholar 

  14. Edgar, B.A. and Datar, S.A., Zygotic Degradation of Two Maternal Cdc25 mRNAs Terminates Drosophila’s Early Cell Cycle Program, Genes Dev., 1996, vol. 10, pp. 1966–1977.

    Article  CAS  PubMed  Google Scholar 

  15. Jäckle, H., Hoch, M., Pankratz, M.J., et al., Transcriptional Control by Drosophila Gap Genes, J. Cell Sci., 1992, vol. 16, suppl., pp. 39–51.

    Google Scholar 

  16. Deshpande, G., Calhoun, G., Yanowitz, J.L., and Schedl, P.D., Novel Functions of Nanos in Downregulating Mitosis and Transcription during the Development of the Drosophila Germline, Cell, 1999, vol. 99, pp. 271–281.

    Article  CAS  PubMed  Google Scholar 

  17. Deshpande, G., Calhoun, G., Jinks, T.M., et al., Nanos Downregulates Transcription and Modulates CTD Phosphorylation in the Soma of Early Drosophila Embryos, Mech. Dev., 2005, vol. 122, pp. 645–657.

    Article  CAS  PubMed  Google Scholar 

  18. Ivanov, A.I., Rovescalli, A.C., Pozzi, P., et al., Genes Required for Drosophila Nervous System Development Identified by RNA Interference, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 16216–16221.

    Article  CAS  PubMed  Google Scholar 

  19. Michaut, L., Flister, S., Neeb, M., et al., Analysis of the Eye Developmental Pathway in Drosophila Using DNA Microarrays, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 4024–4029.

    Article  CAS  PubMed  Google Scholar 

  20. Lessard, J., Wu, J.I., Ranish, J.A., et al., An Essential Switch in Subunit Composition of a Chromatin Remodeling Complex during Neural Development, Neuron, 2007, vol. 55, pp. 201–215.

    Article  CAS  PubMed  Google Scholar 

  21. Georgiev, P.G. and Gerasimova, T.I., Novel Genes Influencing the Expression of the yellow Locus and mdg4 (gypsy) in Drosophila melanogaster, Mol. Gen. Genet., 1989, vol. 220, pp. 121–126.

    Article  CAS  PubMed  Google Scholar 

  22. Mellor, J., It Takes a PHD to Read the Histone Code, Cell, 2006, vol. 126, pp. 22–24.

    Article  CAS  PubMed  Google Scholar 

  23. Org, T., Chignola, F., Hetényi, C., et al., The Autoimmune Regulator PHD Finger Binds to Non-Methylated Histone H3K4 to Activate Gene Expression, EMBO Rep., 2008, vol. 9, pp. 370–376.

    Article  CAS  PubMed  Google Scholar 

  24. Vermeulen, M., Mulder, K.W., Denissov, S., et al., Selective Anchoring of TFIID to Nucleosomes by Trimethylation of Histone H3 Lysine 4, Cell, 2007, vol. 131, pp. 58–69.

    Article  CAS  PubMed  Google Scholar 

  25. Hassan, A.H., Neely, K.E., Vignali, M., et al., Promoter Targeting of Chromatin-Modifying Complexes, Front Biosci., 2001, vol. 6, pp. D1054–D1064.

    Article  CAS  PubMed  Google Scholar 

  26. Mohrmann, L. and Verrijzer, C.P., Composition and Functional Specificity of SWI2/SNF2 Class Chromatin Remodeling Complexes, Biochimica Biophysica Acta, 2005, vol. 1681, pp. 59–73.

    CAS  Google Scholar 

  27. Morse, R.H., Transcription Factor Access to Promoter Elements, J. Cell Biochem., 2007, vol. 102, pp. 560–570.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, H. and Reese, J.C., Exposing the Core Promoter Is Sufficient to Activate Transcription and Alter Coactivator Requirement at RNR3, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 8833–8838.

    Article  CAS  PubMed  Google Scholar 

  29. Moshkin, Y.M., Mohrmann, L., van Ijcken, W.F., and Verrijzer, C.P., Functional Differentiation of SWI/SNF Remodelers in Transcription and Cell Cycle Control, Mol. Cell Biol., 2007, vol. 27, pp. 651–661.

    Article  CAS  PubMed  Google Scholar 

  30. Bell, B. and Tora, L., Regulation of Gene Expression by Multiple Forms of TFIID and Other Novel TAFII-Containing Complexes, Exp. Cell Res., 1999, vol. 246, pp. 11–19.

    Article  CAS  PubMed  Google Scholar 

  31. Muller, F. and Tora, L., The Multicoloured World of Promoter Recognition Complexes, EMBO J., 2004, vol. 23, pp. 2–8.

    Article  PubMed  Google Scholar 

  32. Parvin, J.D. and Young, R.A., Regulatory Targets in the RNA Polymerase II Holoenzyme, Curr. Opin. Genet. Dev., 1998, vol. 8, pp. 565–570.

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura, T., Mori, T., Tada, S., et al., ALL-1 Is a Histone Methyltransferase That Assembles a Supercomplex of Proteins Involved in Transcriptional Regulation, Mol. Cell, 2002, vol. 10, pp. 1119–1128.

    Article  CAS  PubMed  Google Scholar 

  34. Saurin, A.J., Shao, Z., Erdjument-Bromage, H., et al., A Drosophila Polycomb Group Complex Includes Zeste and dTAFII Proteins, Nature, 2001, vol. 412, pp. 655–660.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenfeld, M.G., Lunyak, V.V., and Glass, C.K., Sensors and Signals: A Coactivator/Corepressor/Epigenetic Code for Integrating Signal-Dependent Programs of Transcriptional Response, Genes Dev., 2006, vol. 20, pp. 1405–1428.

    Article  CAS  PubMed  Google Scholar 

  36. Soldatov, A., Nabirochkina, E., Georgieva, S., et al., TAFII40 Protein Is Encoded by the e(y)1 Gene: Biological Consequences of Mutations, Mol. Cell Biol., 1999, vol. 19, pp. 3769–3778.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Kuzmina.

Additional information

Original Russian Text © J.L. Kuzmina, V.V. Panov, N.E. Vorobyeva, N.V. Soshnikova, M.R. Kopantseva, J.V. Nikolenko, E.N. Nabirochkina, S.G. Georgieva, Yu.V. Shidlovskii, 2010, published in Genetika, 2010, Vol. 46, No. 8, pp. 1033–1040.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzmina, J.L., Panov, V.V., Vorobyeva, N.E. et al. SAYP is a novel regulator of metazoan development. Russ J Genet 46, 917–923 (2010). https://doi.org/10.1134/S1022795410080028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795410080028

Keywords

Navigation