Skip to main content
Log in

Genetic variation in a sorghum line with multiple genetic instability induced with ethidium bromide in an in vitro culture

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Ethidium bromide treatment (15 mg/l, 26°C, 18 h) of a sorghum Zheltozernoe 10 callus culture yielded line Zh10-br1 displaying multiple genetic instability. The line was characterized by a broad variety of mutations, which were identified in consecutive generations obtained from one initial regenerant via self-pollination. The mutations caused male sterility (male sterility, generation R1), a low plant height (dwarfness, R2), a reduced awn length (awnless, R3), yellow leaves in seedlings (xantha, R6), leaf variegation (leaf variegation, R6), leaf bleaching (virescence, R6), etc. In some cases, segregation in families suggested a monogenic recessive inheritance for the induced mutations. Male sterility was due to a range of defects that affected microsporogenesis and microgametogenesis and were probably caused by mutations of several genes. Leaf variegation was due to the appearance of green sectors in originally albino seedling leaves; the reversion occurred only in somatic tissues without affecting male and female gametes. In male-sterile and variegated mutants, sequence-specific amplified polymorphism analysis with primers to the Isaak transposon revealed new DNA fragments, which were absent from the original line. The results supported the hypothesis that the mutations isolated in line Zh10-br1 result from transposon mobilization induced by ethidium bromide and/or in vitro culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peschke, V.M., Phillips, R.L., and Gengenbach, B.G., Discovery of Transposable Element Activity among Progeny of Tissue-Culture-Derived Maize Plants, Science, 1987, vol. 238, pp. 804–807.

    Article  CAS  PubMed  Google Scholar 

  2. Peschke, V.M. and Phillips, R.L., Activation of the Maize Transposable Element Suppressor-Mutator (Spm) in Tissue Culture, Theor. Appl. Genet., 1991, vol. 81, no. 1, pp. 90–97.

    Article  Google Scholar 

  3. Grandbastien, M.A., Spielmann, A., and Caboche, M., Tntl, a Mobile Retroviral-Like Transposable Element of Tobacco Isolated by Plant Cell Genetics, Nature, 1989, vol. 337, pp. 376–380.

    Article  CAS  PubMed  Google Scholar 

  4. Hirochika, H., Activation of Tobacco Retrotransposons during Tissue Culture, EMBO J., 1993, vol. 12, pp. 2521–2528.

    CAS  PubMed  Google Scholar 

  5. Hirochika, H., Sugimoto, K., Otsuki, Y., et al., Retrotransposons of Rice Involved in Mutations Induced by Tissue Culture, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 7783–7788.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, Z.L., Han, F.P., Tan, M., et al., Activation of a Rice Endogenous RetroTransposon Tosl17 in Tissue Culture Is Accompanied by Cytosine Demethylation and Causes Heritable Alteration in Methylation Pattern of Flanking Genomic Regions, Theor. Appl. Genet., 2004, vol. 109, no. 1, pp. 200–209.

    Article  CAS  PubMed  Google Scholar 

  7. Kikuchi, K., Terauchi, K., Wada, M., and Hirano, H.Y., The Plant MITE mPing Is Mobilized in Anther Culture, Nature, 2003, vol. 421, no. 6919, pp. 167–170.

    Article  CAS  PubMed  Google Scholar 

  8. Schnable, P.S. and Wise, R.P., Recovery of Heritable, Transposon-Induced, Mutant Alleles of the rf2 Nuclear Restorer of T-Cytoplasm Maize, Genetics, 1994, vol. 136, pp. 1171–1185.

    CAS  PubMed  Google Scholar 

  9. Ayliffe, M.A., Pallotta, M., Langridge, P., and Pryor, A.J., A Barley Activation Tagging System, Plant. Mol. Biol., 2007, vol. 64, no. 3, pp. 329–347.

    Article  CAS  PubMed  Google Scholar 

  10. Qu, S., Desai, A., Wing, R., and Sundaresan, V., A Versatile Transposon-Based Activation Tag Vector System for Functional Genomics in Cereals and Other Monocot Plants, Plant Physiol., 2008, vol. 146, no. 1, pp. 189–199.

    Article  CAS  PubMed  Google Scholar 

  11. Chopra, S., Brendel, V., Zhang, J., et al., Molecular Characterization of a Mutable Pigmentation Phenotype and Isolation of the First Active Transposable Element from Sorghum bicolor, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 26, pp. 15330–15335.

    Article  CAS  PubMed  Google Scholar 

  12. Elkonin, L.A., Tyrnov, V.S., Papazyan, N.D., and Ishin, A.T., Culture of Sorghum Somatic Tissue: Phytohormonal Regulation of Morphogenesis, Fiziol. Rastenii, 1986, vol. 33, no. 3, pp. 504–512.

    CAS  Google Scholar 

  13. Pausheva, Z.P., Praktikum po tsitologii rastenii (Laboratory Manual on Plant Cytology), Moscow: Kolos, 1970.

    Google Scholar 

  14. McDonald, J.H., Handbook of Biological Statistics, 2nd ed., Baltimore: Sparky House, 2009, pp. 21–28, 80–83.

    Google Scholar 

  15. Vos, P., Hogers, R., Bleeker, M., et al., AFLP: A New Technique for DNA Fingerprinting, Nucleic Acids Res., 1995, vol. 23, no. 21, pp. 4407–4414.

    Article  CAS  PubMed  Google Scholar 

  16. Ferguson, L.R. and van Borstel, R.G., Induction of the Cytoplasmic ‘Petite’ Mutation by Chemical and Physical Agents in Saccharomyces cerevisiae, Mutat. Res., 1992, vol. 265, no. 1, pp. 103–148.

    CAS  PubMed  Google Scholar 

  17. Desjardins, P., Frost, E., and Morais, R., Ethidium Bromide-Induced Loss of Mitochondrial DNA from Primary Chicken Embryo Fibroblasts, Mol. Cell Biol., 1985, vol. 5, no. 5, pp. 1163–1169.

    CAS  PubMed  Google Scholar 

  18. Doggett, H., Sorghum, 2nd ed. London: Longman Scientific and Technical, 1988.

    Google Scholar 

  19. Carvalho, C.H.S., Boddu, J., Zehr, U.B., et al., Genetic and Molecular Characterization of Candystripe1 Transposition Events in Sorghum, Genetica, 2005, vol. 124, pp. 201–212.

    Article  PubMed  Google Scholar 

  20. Kaul, M.L.H. and Singh, R.B., Male Sterility in Barley: 5. Gene Action and Microsporogenesis, Cytobios, 1991, vol. 66, no. 265, pp. 71–85.

    Google Scholar 

  21. McCormick, S., Control of Male Gametophyte Development, Plant Cell, 2004, vol. 16, pp. 142–153.

    Article  Google Scholar 

  22. Chang, T.-L., Stoike, L.L., Zarka, D., et al., Characterization of Primary Lesions Caused by the Plastome Mutator of Oenothera, Curr. Genet., 1996, vol. 30, pp. 522–530.

    Article  CAS  PubMed  Google Scholar 

  23. Martines-Zapater, J.M., Gil, R., Sarel, J., and Somerville, S.R., Mutations at the Arabidopsis CHM Locus Promote Rearrangements of the Mitochondrial Genome, Plant Cell, 1992, vol. 4, pp. 889–899.

    Article  Google Scholar 

  24. Newton, K.J., Knudsen, C., Gabay-Laughnan, S., and Laughnan, J.R., An Abnormal Growth Mutant in Maize Has a Defective Mitochondrial Cytochrome Oxidase Gene Plant Cell, 1990, vol. 2, pp. 107–113.

    Article  CAS  PubMed  Google Scholar 

  25. Tsugane, K., Maekawa, M., Takagi, K., et al., An Active DNA Transposon nDart Causing Leaf Variegation and Mutable Dwarfism and Its Related Elements in Rice, Plant J., 2006, vol. 45, no. 1, pp. 46–57.

    Article  CAS  PubMed  Google Scholar 

  26. Yu, F., Fu, A., and Aluru, M., et al., Variegation Mutants and Mechanisms of Chloroplast Biogenesis, Plant Cell Environ., 2007, vol. 30, pp. 350–365.

    Article  CAS  PubMed  Google Scholar 

  27. Elkonin L.A. and Tsvetova, M.I., Genetic and Cytological Analyses of the Male Sterility Mutation Induced in a Sorghum Tissue Culture with Streptomycin, Russ. J. Genet., 2008, vol. 44, no. 5, pp. 575–583.

    Article  CAS  Google Scholar 

  28. Mckenzie, N., Wen, L.-Y., and Dale, P.J., Tissue-Culture Enhanced Transposition of the Maize Transposable Element Dissociation in Brassica oleracea var. “Italica”, Theor. Appl. Genet., 2002, vol. 105, no. 1, pp. 23–33.

    Article  CAS  PubMed  Google Scholar 

  29. Zavalishina, A.N. and Tyrnov, V.S., Cytoplasm as a Factor of Nuclear Genome Variation, in Genom Roslin (Plant Genome), Odessa: Yuzhniy biotechnologicheskiy tzentr v rastenievodstve UAAN, 2008, pp. 75–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Elkonin.

Additional information

Original Russian Text © L.A. Elkonin, G.A. Gerashchenkov, M.I. Tsvetova, N.A. Rozhnova, 2010, published in Genetika, 2010, Vol. 46, No. 7, pp. 911–922.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elkonin, L.A., Gerashchenkov, G.A., Tsvetova, M.I. et al. Genetic variation in a sorghum line with multiple genetic instability induced with ethidium bromide in an in vitro culture. Russ J Genet 46, 808–818 (2010). https://doi.org/10.1134/S1022795410070057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795410070057

Keywords

Navigation