Skip to main content
Log in

Molecular variability in the common shrew Sorex araneus L. from european russia and siberia inferred from the length polymorphism of DNA regions flanked by short interspersed elements (inter-SINE PCR) and the relationships between the moscow and seliger chromosome races

  • Molecular Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic exchange among chromosomal races of the common shrew Sorex araneus and the problem of reproductive barriers have been extensively studied by means of such molecular markers as mtDNA, microsatellites, and allozymes. In the present study, the interpopulation and interracial polymorphism in the common shrew was derived, using fingerprints generated by amplified DNA regions flanked by short interspersed repeats (SINEs)—interSINE PCR (IS-PCR). We used primers, complementary to consensus sequences of two short retroposons: mammalian element MIR and the SOR element from the genome of Sorex araneus. Genetic differentiation among eleven populations of the common shrew from eight chromosome races was estimated. The NJ and MP analyses, as well as multidimensional scaling showed that all samples examined grouped into two main clusters, corresponding to European Russia and Siberia. The bootstrap support of the European Russia cluster in the NJ and MP analyses was respectively 76 and 61%. The bootstrap index for the Siberian cluster was 100% in both analyses; the Tomsk race, included into this cluster, was separated with the bootstrap support of NJ/MP 92/95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orlov, V.N. and Bulatova, N.Sh., Sravnitel’naya tsitogenetika i kariosistematika mlekopitayushchikh (Comparative Cytogenetics and Karyosystematics of Mammals), Moscow: Nauka, 1983.

    Google Scholar 

  2. Searle J.B., Three New Karyotypic Races of the Common Shrew Sorex araneus (Mammalia: Insectivora) and a Phylogeny, Syst. Zool., 1984, vol. 33, pp. 184–194.

    Article  Google Scholar 

  3. Searle, J.B and Wojcik, J.M., Chromosomal Evolution: The Case of Sorex araneus, Evolution of Shrews, Wojcik, J.M. and Wolsan, M., Eds., Bialowieza: Mammal Res. Inst. Polish Acad. Sci., 1998, pp. 219–268.

    Google Scholar 

  4. Wojcik, J.M., Ratkiewicz, M., and Searle, J.B., Evolution of the Common Shrew Sorex araneus: Chromosomal and Molecular Aspects, Acta Theriologica, 2002, vol. 47,suppl. 1, pp. 139–167.

    Google Scholar 

  5. Wojcik, J.M., Borodin, P.M., Fredga, K., et al., The List of the Chromosome Races of the Common Shrew Sorex araneus (Updated 2002), Mammalia, 2003, vol. 67, no. 2, pp. 169–178.

    Google Scholar 

  6. Orlov, V.N., Bulatova, N.Sh., Kozlovskii, A.I., and Balakirev, A.E., Hierarchy of Intraspecific Taxa of Common Shrew Sorex araneus (Insestivora), and Taxonomic Species Structure in Mammals, Zool. Zh., 2004, vol. 83, no. 2, pp. 199–212.

    Google Scholar 

  7. Volobouev, V.T. and Catzeflis, F., Mechanisms of Chromosomal Evolution in Three European Species of the Sorex araneus-arcticus Group (Insectivora: Soricidae), Zeitschrift fur Zool. Systematik und Evolutionsforschung, 1989, vol. 27, pp. 252–262.

    Article  Google Scholar 

  8. Zima, J., Is the Trend Toward Low 2Na Numbers Inescapable for Sorex araneus Populations?, Mem. Societe Vaudoise Sci. Natur., 1991, vol. 19, pp. 63–71.

    Google Scholar 

  9. Searle, J.B., Fedyk, S., Fredga, K., et al., Nomenclature for the Chromosomes of the Common Shrew (Sorex araneus), Mem. Societe Vaudoise Sci. Natur., 1991, vol. 19, pp. 13–22.

    Google Scholar 

  10. Ratkiewicz, M., Fedyk, S., Banaszek, A., et al., The Evolutionary History of the Two Karyotypic Groups of the Common Shrew, Sorex araneus, in Poland, Heredity, 2002, vol. 88, pp. 235–242.

    Article  PubMed  CAS  Google Scholar 

  11. Andersson, A.-C., Postglacial Population History of the Common Shrew (Sorex araneus) in Fennoscandia: Molecular Studies of Recolonisation, Sex-Biased Gene Flow and the Formation of Chromosome Races, Acta Universitatis Upsaliensis, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 986, Uppsala: Uppsala Univ, 2004.

    Google Scholar 

  12. Bannikova, A.A., Bulatova, N.S., Lebedev, V.S., and Kramerov, D.A., Mitochondrial and Nuclear DNA Variability of the East European and Siberian Chromosome Races of the Common Shrew Sorex araneus, Evolution in the Sorex araneus Group: Cytogenetic and Molecular Aspects: 7th Meeting Intern. Sorex araneus Cytogenetics Committee (ISACC), St. Petersburg, 2005, pp. 14–15.

  13. Ruedi, M., Protein Evolution in Shrews, Evolution of Shrews, Wojcik, J.M. and Wolsan, M., Eds., Bialowieza: Mammal Research Inst. Polish Acad. Sci., 1998, pp. 269–294.

    Google Scholar 

  14. Hedrick P.W., Highly Variable Loci and Their Interpretation in Evolution and Conservation, Evolution, 1999, vol. 53, pp. 313–318.

    Article  Google Scholar 

  15. Balloux, F., Brunner, H., Lugon-Moulin, N., et al., Microsatellites Can Be Misleading: An Empirical and Simulation Study, Evolution, 2005, vol. 54, no. 4, pp. 1414–1422.

    Google Scholar 

  16. Lugon-Moulin, N., Balloux, F., and Hausser, J., Genetic Differentiation of Common Shrew Sorex araneus Populations among Different Alpine Valleys Revealed by Microsatellites, Acta Theriologica, 2000, vol. 45, no. 1, pp. 103–117.

    Google Scholar 

  17. Bannikova, A.A., Matveev, V.A., and Kramerov, D.A., Using Inter-Sine-RCR to Study Mammalian Phylogeny Rus. J. Genet., 2002, vol. 38, no. 6, pp. 714–724.

    Article  CAS  Google Scholar 

  18. Bannikova, A.A., Lavrenchenko, L.A., and Kramerov, D.A., Phylogenetic Relationships between Afrotropical and Palaearctic Crocidura Species Inferred from Inter-SINE-PCR Data, Biochem. Syst. and Ecol., 2004, vol. 33, pp. 45–59.

    Article  CAS  Google Scholar 

  19. Bannikova, A.A., Kramerov, D.A., Vasilenko, V.N., et al., DNA Polymorphism in Erinaceus Hedgehogs and Polytypicism of E. concolor (Insectivora, Erinaceidae), Zool. Zh., 2003, vol. 82, no. 1, pp. 1–11.

    Google Scholar 

  20. Matveev, V.A., Kruskop, S.V., and Kramerov, D.A., Revalidation of Myotis petax Hollister, 1912 and Its New Status in Connection with M. daubentonii (Kuhl, 1817) (Vespertilionidae, Chiroptera), Acta Chiropterologica, 2005, vol. 7, no. 1, pp. 23–37.

    Google Scholar 

  21. Bannikova, A.A., Bulatova, N.S., Krysanov, E.Y., and Kramerov, D.A., DNA Polymorphism of Sorex araneus and Its Relationships with Associated Species As Derived from Inter-SINE-PCR, Mammalia, 2003, vol. 38, no. 2, pp. 263–274.

    Article  Google Scholar 

  22. Bulatova, N., Searle, J.B., Bystrakova, N., et al., The Diversity of Chromosome Races in Sorex araneus from European Russia, Acta Theriologica, 2000, vol. 45, no. Suppl. 1, pp. 33–46.

    Google Scholar 

  23. Polyakov, A.V., Panov, V.V., Ladygina, T.Yu., et al., Chromosomal Evolution of the Common Shrew Sorex araneus L. from the Southern Urals and Siberia in the Postglacial Period, Rus. J. Genet., 2001, vol. 37, no. 4, pp. 351–357.

    Article  CAS  Google Scholar 

  24. Hausser, J., Fedyk, S., Fredga, K., et al., Definition and Nomenclature of Chromosome Races of Sorex araneus, Folia Zoologica, 1994, vol. 43, suppl. I, pp. 1–9.

    Google Scholar 

  25. Bulatova, N., Kalinin, A., Alexandrova, A., and Alexandrov, D., Perspectives of Studying a Border Zone between Two Chromosome Races—Moscow and Seliger—of Sorex araneus, Evolution in the Sorex araneus Group: Cytogenetic and Molecular Aspects, 6th Meeting Intern. Sorex araneus Cytogenetics Committee (ISACC), Paris, 2002, p. 18.

  26. Bulatova, N., Shchipanov, N., and Searle, J., The Moscow-Seliger “Strong” Hybrid Zone—a Model System in European Russia, Evolution in the Sorex araneus Group: Cytogenetic and Molecular Aspects: 7th Meeting Intern. Sorex araneus Cytogenetics Committee (ISACC), St. Petersburg, 2005, p. 20.

  27. Sheftel, B.I. and Krysanov, E.Yu., Chromosome Polymorphism of Race Neroosa (Sorex araneus) on the Territory with Radioactive Pollution After Chernobyl Accident, Evolution in the Sorex araneus Group: Cytogenetic and Molecular Aspects: 6th Meeting Intern. Sorex araneus Cytogenetics Committee (ISACC), Paris, 2002, pp. 29–30.

  28. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  29. Smit, A. and Riggs, A., MIRs are Classic, tRNA-Derived SINEs that Amplified before the Mammalian Radiation, Nucl. Acids Res., 1995, vol. 23, no. 1, pp. 98–102.

    PubMed  CAS  Google Scholar 

  30. Jurka, J., Zietkiewicz, E., and Labuda, D., Ubiquitous Mammalian-Wide Interspersed Repeats (MIRs) are Molecular Fossils from the Mesozoic Era, Nucl. Acids Res., 1995, vol. 23, no. 1, pp. 170–175.

    PubMed  CAS  Google Scholar 

  31. Gilbert, N. and Labuda, D., Evolutionary Inventions and Continuity of CORE-SINEs in Mammals, J. Mol. Biol., 2000, vol. 298, pp. 365–377.

    Article  PubMed  CAS  Google Scholar 

  32. Borodulina, O.R. and Kramerov, D.A., Short Interspersed Elements (SINEs) from Insectivores: Two Classes of Mammalian SINEs Distinguished by A-Rich Tail Structure, Mammalian Genome, 2001, vol. 12, pp. 779–786.

    Article  PubMed  CAS  Google Scholar 

  33. Slatko, B.E and Albright, L.M., DNA Sequencing, in Short Protocols in Molecular Biology, Ausubel, F.M., et al., Eds., New York: Wiley, 1992, pp. 48–53.

    Google Scholar 

  34. Swofford, D.L., PAUP: Phylogenetic Analysis using Parsimony (and Other Methods), Version 4, Sunderland: Sinauer, 1998.

    Google Scholar 

  35. Nei, M. and Li, W.-H., Mathematical Model for Studying Genetic Variation in Terms of Restriction Endonucleases, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 5269–5273.

    Article  PubMed  CAS  Google Scholar 

  36. Statsoft: Statistica for Windows, Tulsa: StatSoft, 1995, pp. 74 104–74 442.

  37. Shchipanov, N.A., Population as a Unit of a Species Existence: Small Mammals, Zool. Zh., 2003, vol. 82, no. 4, pp. 450–469.

    Google Scholar 

  38. Trifonov, V.A., Perel’man, P.L., Romanenko, S.V., et al., Phylogenomics of Mammals: Cytogernetic Aspects, Biol. Membr., 2005, vol. 22, no. 3, pp. 212–226.

    CAS  Google Scholar 

  39. Orlov, V., Bulatova, N., Kozlovsky, A., et al., Karyotypic Variation of the Common Shrew (Sorex araneus) in European Russia: Preliminary Results, Hereditas, 1996, vol. 125, pp. 117–121.

    Article  Google Scholar 

  40. Polyakov, A.V., Zima, J., Searle, J.B., et al., Chromosome Races of the Common Shrew Sorex araneus in the Ural Mountains: A Link Between Siberia and Scandinavia?, Acta Theriologica, 2000, vol. 45,suppl. 1, pp. 19–26.

    Google Scholar 

  41. Orlov, V.N. and Kozlovsky, A.I., On the Role of the Glacial Period in the Development of Chromosomal Polymorphism in Common Shrew Sorex araneus L. (Insestivora, Mammalia), Dokl. Akad. Nauk, 2002, vol. 386, pp. 423–426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Bannikova, N.S. Bulatova, D.A. Kramerov, 2006, published in Genetika, 2006, Vol. 42, No. 6, pp. 737–747.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bannikova, A.A., Bulatova, N.S. & Kramerov, D.A. Molecular variability in the common shrew Sorex araneus L. from european russia and siberia inferred from the length polymorphism of DNA regions flanked by short interspersed elements (inter-SINE PCR) and the relationships between the moscow and seliger chromosome races. Russ J Genet 42, 595–604 (2006). https://doi.org/10.1134/S1022795406060020

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406060020

Keywords

Navigation