Skip to main content
Log in

Filamentous Cyanobacteria as a Prototype of Multicellular Organisms

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Filamentous cyanobacteria belong to the oldest organisms on our planet. Many cyanobacteria exist in the form of trichomes, i.e., cell chains comprising hundreds of cells connected by intercellular interactions. Under deficiency of environmental nitrogen, the cells in trichomes of some cyanobacteria undergo specialization to perform separate functions of oxygenic photosynthesis and nitrogen fixation. Thus, the trichome transforms into a complex organism (complex system), in which vegetative cells and the heterocysts exchange with photosynthetic and nitrogen fixation products. The transmission of metabolites may proceed via the periplasmic space or through the special contact structures called microplasmodesmata, septosomes, septal contacts, or nanopores. In filamentous cyanobacteria, the storage and transmission of energy at the cellular level is accompanied by electrical processes occurring in cell membranes. Theoretical and model analysis of extracellular currents induced by the local illumination in trichomes of Phormidium uncinatum showed that the trichomes are cell associations organized into unified cables capable of transferring energy along the trichome. From the viewpoint of modern molecular genetics, filamentous cyanobacteria showing the distribution of functions between neighboring cells are the prototype of a multicellular organism and a convenient model for elucidating the regulatory mechanisms of multicellularity, which, apparently, appeared more than once during the evolution in different phylogenetic groups, including bacteria, fungi, algae, and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ugolev, A.M., Estestvennye tekhnologii biologicheskikh sistem (Natural Technologies for Biological Systems), Leningrad: Nauka, 1986.

  2. Stebegg, R., Schmetterer, G., and Rompel, A., Transport of organic substances through the cytoplasmic membrane of cyanobacteria, Phytochemistry, 2019, vol. 157, p. 206.

    Article  CAS  PubMed  Google Scholar 

  3. Ku, C., Nelson-Sathi, S., Roettger, M., Sousa, F.L., Lockhart, P.J., Bryant, D., Hazkani-Covo, E., McInerney, J.O., Landan, G., and Martin, W.F., Endosymbiotic origin and differential loss of eukaryotic genes, Nature, 2015, vol. 524, p. 427.

    Article  CAS  PubMed  Google Scholar 

  4. Lyons, T.W., Reinhard, C.T., and Planavsky, N.J., The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 2014, vol. 506, p. 307.

    Article  CAS  PubMed  Google Scholar 

  5. Mereschkowsky, K.S., Über Natur und Ursprung der Chromatophoren im Pflanzenreiche, Biol. Centralblatt, 1905, vol. 25, p. 593.

    Google Scholar 

  6. Famintsyn, A.S., O roli simbioza v evolyutsii organizmov (The Role of Symbiosis in the Evolution of Organisms), St. Petersburg: Imper. Akad. Nauk, 1907.

  7. Sánchez-Baracaldoa, P., Raven, J.A., Pisani, D., and Knoll, A.H., Early photosynthetic eukaryotes inhabited low-salinity habitats, Proc. Natl. Acad. Sci. USA, 2017, vol. 114: e7737. https://doi.org/10.1073/pnas.1620089114

    Article  CAS  Google Scholar 

  8. Schirrmeister, B.E., de Vos, J.M., Antonelli, A., and Bagheri, H.C., Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, p. 1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schirrmeister, B.E., Antonelli, A., and Bagheri, H.C., The origin of multicellularity in cyanobacteria, BMC Evol. Biol., 2011, vol. 11, p. 45. https://doi.org/10.1186/1471-2148-11-45

    Article  PubMed  PubMed Central  Google Scholar 

  10. Skulachev, V.P., Bogachev, A.V., and Kasparinsky, F.O., Membrannaya bioenergetika (Membrane Bioenergetics), Moscow: Mosk. Gos. Univ., 2010.

  11. Cardona, T., Battchikova, N., Zhang, P., Stensjo, K., Aro, E.-M., Lindblad, P., and Magnuson, A., Electron transfer protein complexes in the thylakoid membranes of heterocysts from the cyanobacterium Nostoc punctiforme,Biochim. Biophys. Acta, 2009, vol. 1787, p. 252.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, L.N., Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes, Biochim. Biophys. Acta, 2016, vol. 1857, p. 256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mullineaux, C.W., Organization and dynamics of bioenergetic systems in bacteria, Biochim. Biophys. Acta, 2016, vol. 1857. https://doi.org/10.1016/j.bbabio.2016.01.004

    Article  CAS  Google Scholar 

  14. Berkinblit, M.B., Bozhkova, V.P., Boitsova, L.Yu., Mittel’man, L.A., Potapova, T.V., Chailakhyan, L.M., and Sharovskaya, Yu.Yu., Vysokopronitsaemye kontaktnye membrany (High Permeability Contact Membranes), Moscow: Nauka, 1981.

  15. Chailakhyan, L.M., Glagolev, A.N., Glagoleva, T.N., Murvanidze, G.M., Potapova, T.V., and Skulachev, V.P., Intercellular power transmission along trichomes of cyanobacteria, Biochim. Biophys. Acta, 1982, vol. 679, p. 60.

    Article  CAS  Google Scholar 

  16. Levin, S.A., Potapova, T.V., Skulachev, V.P., and Chailakhyan, L.M., Propagation of electrical potential changes in filamentous cyanobacteria, Biofizika, 1982, vol. 27, p. 280.

    CAS  PubMed  Google Scholar 

  17. Levin, S.A., Potapova, T.V., Skulachev, V.P., and Chailakhyan, L.M., Analysis of the cable structure of blue-green algae, Biofizika, 1982, vol. 27, p. 684.

    CAS  PubMed  Google Scholar 

  18. Potapova, T.V., Aslanidi, K.B., Shalapenok, A.A., Karnaukhov, V.N., and Chailakhyan, L.M., Photoelectric activity and spectral characteristics of the single trichoma of cyanobacterium Phormidium uncinatum,Dokl. Akad. Nauk SSSR, 1986, vol. 289, p. 1504.

    Google Scholar 

  19. Potapova, T.V., Energetic functions of permeable intercellular junctions, in Intercellular Communication, Bukauskas, F., Ed., Manchester: Univ. Press, 1991, p. 143.

    Google Scholar 

  20. Potapova, T.V. and Aslanidi, K.B., Energy coupling of adjacent cells as an universal function of cell-to-cell permeable junctions, Prog. Cell Res., 1995, vol. 4, p. 53.

    Article  Google Scholar 

  21. Potapova, T.V. and Boitsova, L.Yu., Structure, function, regulation: experimental analysis in groups of non-excitable cells coupled via permeable junctions, Membr. Cell Biol., 1998, vol. 11, p. 817.

    CAS  PubMed  Google Scholar 

  22. Sawa, M., Fantuzzi, A., Bommelli, P., Howe, C.J., Hellgardt, K., and Nixon, P.J., Electricity generation from digitally printed cyanobacteria, Nat. Commun., 2017, vol. 8, p. 1327. https://doi.org/10.1038/s41467-017-01084-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Irimia-Vladu, M., “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future, Chem. Soc. Rev., 2014, vol. 43, p. 588.

    Article  CAS  PubMed  Google Scholar 

  24. Choi, S., Nicroscale microbial fuel cells: advances and challenges, Biosens. Bioelectron., 2015, vol. 69, p. 8.

    Article  CAS  PubMed  Google Scholar 

  25. Skulachev, V.P., Adenosine triphosphate and the transmembrane hydrogen ion potential—2 convertible and transportable forms of energy in the living cell, Usp. Sovrem. Biol., 1977, vol. 84, p. 165.

    CAS  PubMed  Google Scholar 

  26. Harold, F.M., The Way of the Cell: Molecules, Organisms and the Order of Life, Oxford: Oxford Univ. Press, 2001.

    Google Scholar 

  27. Bald, D., ATP synthase: structure, function and regulation of a complex machine, in Bioenergetic Processes of Cyanobacteria: From Evolutionary Singularity to Ecological Diversity, Peschek, G., Obinger, C., and Renger, G., Eds., Dordrecht: Springer, 2011, p. 239. https://doi.org/10.1007/978-94-007-0388-9

    Google Scholar 

  28. Liberton, M. and Pakrasi, H.B., Membrane systems in cyanobacteria, in The Cyanobacteria: Molecular Biology, Genomics and Evolution, Herrero, A. and Flores, E., Eds., Norfolk: Caister Acad. Press, 2008, p. 217.

    Google Scholar 

  29. Rexroth, S., Mullineaux, C.W., Ellinger, D., Sendtko, E., Rögner, M., and Koenig, F., The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains, Plant Cell, 2011, vol. 23, p. 2379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vothknecht, U.C. and Westhoff, P., Biogenesis and origin of thylakoid membranes, Biochim. Biophys. Acta, 2001, vol. 1541, p. 91.

    Article  CAS  PubMed  Google Scholar 

  31. Nickelsen, J., Rengstl, B., Stengel, A., Schottkowski, M., Soll, J., and Ankele, E., Biogenesis of the cyanobacterial thylakoid membrane system—an update, FEMS Microbio-l. Lett., 2011, vol. 315, p. 1.

    Article  CAS  Google Scholar 

  32. Rast, A., Heinz, S., and Nickelsen, J., Biogenesis of thylakoid membranes, Biochim. Biophys. Acta, 2015, vol. 1847, p. 821.

    Article  CAS  PubMed  Google Scholar 

  33. Van de Meene, A.M., Hofmann-Marriott, M.F., Vermaas, W.F., and Roberson, R.W., The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803, Arch. Microbiol., 2006, vol. 184, p. 259.

    Article  PubMed  CAS  Google Scholar 

  34. Van de Meene, A.M., Sharp, W.P., McDaniel, J.H., Friedrich, H., Vermaas, W.F., and Roberson, R.W., Gross morphological changes in thylakoid membrane structure are associated with photosystem I deletion in Synechocystis sp. PCC 6803, Biochim. Biophys. Acta, 2012, vol. 1818, p. 1427.

    Article  CAS  PubMed  Google Scholar 

  35. Nevo, R., Charuvi, D., Shimoni, E., Schwarz, R., Kaplan, A., Ohad, I., and Reich, Z., Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria, EMBO J., 2007, vol. 26, p. 1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zak, E., Norling, B., Maitra, R., Huang, F., Andersson, B., and Parkasi, H.B., The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membrane, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, p. 13443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vermaas, W.F., Timlin, J.A., Jones, H.D., Siclair, M.B., Nieman, L.T., Hamad, S.W., Melgaard, D.K., and Haaland, D.M., In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, p. 4050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Collins, A.M., Liberton, M., Jones, H.D., Garcia, O.F., Pakrasi, H.B., and Timlin, J.A., Photosynthetic pigment localization and thylakoid membrane morphology are altered in Synechocystis 6803 phycobilisome mutants, Plant Physiol., 2012, vol. 158, p. 1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sherman, D.M., Troyan, T.A., and Sherman, L.A., Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC 7942, Plant Physiol., 1994, vol. 106, p. 251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, L.N. and Scheuring, S., Investigation of photosynthetic membrane structure using atomic force microscopy, Trends Plant Sci., 2013, vol. 18, p. 277.

    Article  CAS  PubMed  Google Scholar 

  41. Nagy, G., Posselt, D., Kovacs, L., Holm, J.K., Szabo, M., Ughy, B., Rosta, L., Peters, J., Timmins, P., and Garab, G., Reversible membrane reorganizations during photosynthesis in vivo: revealed be small-angle neutron scattering, Biochem. J., 2011, vol. 436, p. 225.

    Article  CAS  PubMed  Google Scholar 

  42. Liberton, M., Page, L.E., O’Dell, W.B., O’Neill, H., Mamontov, E., Urban, W.S., and Pakrasi, H.B., Organization and flexibility of cyanobacterial thylakoid membranes examined by neutron scattering, J. Biol. Chem., 2013, vol. 288, p. 3632.

    Article  CAS  PubMed  Google Scholar 

  43. Johnson, G.N., Physiology of PSI cyclic electron transport in higher plants, Biochim. Biophys. Acta, 2011, vol. 1807, p. 384.

    Article  CAS  PubMed  Google Scholar 

  44. Badger, M.R. and Price, G.D., CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution, J. Exp. Bot., 2003, vol. 54, p. 609.

    Article  CAS  PubMed  Google Scholar 

  45. Grotjohann, I. and Fromme, P., Structure of cyanobacterial photosystem I, Photosynth. Res., 2005, vol. 85, p. 51.

    Article  CAS  PubMed  Google Scholar 

  46. Gabdulkhakov, A.G. and Dontsova, M.V., Structural studies on photosystem II of cyanobacteria, Biochemistry (Moscow), 2013, vol. 78, p. 1524. https://doi.org/10.1134/S0006297913130105

    Article  CAS  PubMed  Google Scholar 

  47. Herrero, A., Stavans, J., and Flores, E., The multicellular nature of filamentous heterocyst-forming cyanobacteria, FEMS Microbiol. Rev., 2016, vol. 40, p. 831. https://doi.org/10.1093/femsre/fuw029

    Article  CAS  PubMed  Google Scholar 

  48. Pfeil, B.E., Schoefs, B., and Spetea, C., Function and evolution of channels and transporters in photosynthetic membranes, Cell. Mol. Life Sci., 2014, vol. 71, p. 979. https://doi.org/10.1007/s00018-013-1412-3

    Article  CAS  PubMed  Google Scholar 

  49. Shvarev, D. and Maldener, I., ATP-binding cassette transporters of the multicellular cyanobacterium Anabaena sp. PCC 7120: a wide variety for a complex lifestyle, FEMS Microbiol. Lett., 2018, vol. 365, no. 4. https://doi.org/10.1093/femsle/fny012

  50. Davidson, A.L., Dassa, E., Orelle, C., and Chen, J., Structure, function and evolution of bacterial ATP-binding cassette systems, Microbiol. Mol. Biol. Rev., 2008, vol. 72, p. 317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Higgins, C.F., ABC transporters: from microorganisms to man, Annu. Rev. Cell Biol., 1992, vol. 8, p. 67.

    Article  CAS  PubMed  Google Scholar 

  52. Rees, D.C., Johnson, E., and Lewinson, O., ABC transporters: the power to change, Nat. Rev. Mol. Cell Biol., 2009, vol. 10, p. 218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Prindle, A., Liu, J., Munehiro, A., Ly, S., Garcia-Ojalvo, J., and Sitel, G.M., Ion channels enable electrical communication in bacterial communities, Nat-ure, 2015, vol. 527, p. 59. https://doi.org/10.1038/nature15709

    Article  CAS  Google Scholar 

  54. Corrales-Guerrero, L., Tai, A., Arbel-Goren, R., Mariscal, V., Flores, E., Herrero, A., and Stavans, J., Spatial fluctuations in expression of the heterocyst-differentiation regulatory gene hetR in Anabaena,PLoS Genet., 2015, vol. 11: e1005031. https://doi.org/10.1371/journal.pgen.1005031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Flores, E., Herrero, A., Wolk, C.P., and Maldener, I., Is the periplasm continuous in filamentous multicellular cyanobacteria? Trends Microbiol., 2006, vol. 14, p. 439.

    Article  CAS  PubMed  Google Scholar 

  56. Mariscal, V., Herrero, A., and Flores, E., Continuous periplasm in a filamentous, heterocyst-formimg cyanobacterium, Mol. Microbiol., 2007, vol. 65, p. 1139.

    Article  CAS  PubMed  Google Scholar 

  57. Wilk, L., Strauss, M., Rudolf, M., Nicolaisen, K., Flores, E., Kuhlbrandt, W., and Schief, E., Outer membrane continuity and septosome formation between vegetative cells in the filaments of Anabaena sp. strain PCC 7120, Cell. Microbiol., 2011, vol. 13, p. 1744.

    Article  CAS  PubMed  Google Scholar 

  58. Giddings, T.H. and Staehelin, L.A., Plasma membrane architecture of Anabaena cylindrica: occurrence of microplasmodesmata and changes associated with heterocyst development and the cell cycle, Eur. J. Cell Biol., 1978, vol. 16, p. 235.

    Google Scholar 

  59. Lehner, J., Berendt, S., Dörsam, B., Pérez, R., Forchhammer, K., and Maldener, I., Prokaryotic multicellularity: a nanopore array for bacterial cell communication, FASEB J., 2013, vol. 27, p. 2293.

    Article  CAS  PubMed  Google Scholar 

  60. Mariscal, V., Cell–cell joining proteins in heterocyst-forming cyanobacteria, in The Cell Biology of Cyan-obacteria, Flores, E. and Herrero, A., Eds., Poole: Caister Acad. Press, 2014, p. 293.

    Google Scholar 

  61. Omari-Nasser, A., Mariscal, V., Austin, J.R., II, and Haselkorn, R., Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, Proc. Natl. Acad. Sci. USA, 2015. https://doi.org/10.1073/pnas.1512232112

    Article  CAS  Google Scholar 

  62. Giddings, T.H. and Staehelin, L.A., Observation of microplasmodesmata in both heterocyst forming and non-heterocyst forming filamentous cyanobacteria by freeze-fracture electron microscopy, Arch. Microbiol., 1981, vol. 129, p. 295.

    Article  Google Scholar 

  63. Mullineaux, C.W., Mariscal, V., Nenninger, A., Khanum, H., Herrero, A., Flores, E., and Adams, D.G., Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria, EMBO J., 2008, vol. 27, p. 1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mariscal, V., Herrero, A., Nenninger, A., Mullineaux, C.W., and Flores, E., Functional dissection of the three-domain SepJ protein joining the cells in cyanobaterial trichomes, Mol. Microbiol., 2011, vol. 79, p. 1077.

    Article  CAS  PubMed  Google Scholar 

  65. Nurnberg, D.J., Mariscal, V., Bornikoel, J., Nieves-Morion, M., Kraub, N., Herrero, A., Maldener, I., Flores, E., and Mullineaux, C.W., Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium, mBio, 2015, vol. 6: e02109. https://doi.org/10.1128/mBio.02109-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Juttner, R., 14C-labeled metabolites in heterocysts and vegetative cells of Anabaena cylindrica filaments and their presumptive function as transport vehicles of organic carbon and nitrogen, J. Bacteriol., 1983, vol. 155, p. 628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cumino, A.C., Marcozzi, C., Barreiro, R., and Salerno, G.L., Carbon cycling in Anabaena sp. PCC 7120. Sucrose synthesis in the heterocysts and possible role in nitrogen fixation, Plant Physiol., 2007, vol. 143, p. 1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lopez-Igual, R., Flores, E., and Herrero, A., Inactivation of a heterocyst-specific invertase indicates a principal role of sucrose catabolism in heterocysts of Anabaena sp., J. Bacteriol., 2010, vol. 192, p. 5526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vargas, W.A., Nishi, C.N., Giarrocco, L.E., and Salerno, G.L., Differential roles of alkaline/neutral invertases in Nostoc sp. PCC 7120: Inv-B isoform is essential for diazotrophic growth, Planta, 2011, vol. 233, p. 153.

    Article  CAS  PubMed  Google Scholar 

  70. Hegazi, M., Piotukh, K., Mattow, J., Deutzmann, R., Volkmer-Engert, R., and Lockau, W., Isoaspartyl dipeptidase activity of plant-type asparaginases, Bioc-hem. J., 2002, vol. 364, p. 129.

    Article  Google Scholar 

  71. Burnat, M., Schleiff, E., and Flores, E., Cell envelope components influencing filament length in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, J. Bacteriol., 2014, vol. 196, p. 4026. https://doi.org/10.1128/JB.02128-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Merino-Puerto, V., Mariscal, V., Mullineaux, C.W., Herrero, A., and Flores, E., Fra proteins influencing filament integrity, diazotrophy and localization of septal protein SepJ in the heterocyst-forming cyanobacterium Anabaena sp., Mol. Microbiol., 2010, vol. 75, p. 1159.

    Article  CAS  PubMed  Google Scholar 

  73. Merino-Puerto, V., Schwarz, H., Maldener, I., Mariscal, V., Mullineaux, C.W., Herrero, A., and Flores, E., FraC/FraD-dependent intercellular moleculare exchange in the filaments of heterocyst-forming cyanobacterium Anabaena sp., Mol. Microbiol., 2011, vol. 82, p. 87.

    Article  CAS  PubMed  Google Scholar 

  74. Flores, E., Nieves-Morion, M., and Mullineaux, C.W., Cyanobacterial septal junctions: properties and regulation, Life, 2019, vol. 9, p. 1. https://doi.org/10.3390/life9010001

    Article  CAS  Google Scholar 

  75. Picossi, S., Montesinos, M.L., Pernil, R., Lichtlé, C., Herrero, A., and Flores, E., ABC-type neutral amino acid permease N-I is required for optimal diazotrophic growth and is repressed in the heterocysts of Anabaena sp. strain PCC 7120, Mol. Microbiol., 2005, vol. 57, p. 1582.

    Article  CAS  PubMed  Google Scholar 

  76. Pernil, R., Picossi, S., Mariscal, V., Herrero, A., and Flores, E., ABC-type amino acid uptake transporters Bgt and N-II of Anabaena sp. strain PCC 7120 share an ATPase subunit and are expressed in vegetative cells and heterocysts, Mol. Microbiol., 2008, vol. 67, p. 1067.

    Article  CAS  PubMed  Google Scholar 

  77. Nicolaisen, K., Mariscal, V., Bredemeier, R., Pernil, R., Moslavac, S., Lopez-Igual, R., Maldener, I., Herrero, A., Schleiff, F., and Flores, E., The outer membrane of a heterocyst-forming cyanobacterium is a permeability barrier for uptake of metabolites that are exchanged between cells, Mol. Microbiol., 2009, vol. 74, p. 58.

    Article  CAS  PubMed  Google Scholar 

  78. Hahn, A. and Schleiff, E., The cell envelope, in The Cell Biology of Cyanobacteria, Flores, E. and Herrero, A., Eds., Norfolk: Caister Acad, Press, 2014, p. 29.

  79. Nicolaisen, K., Mariscal, V., Bredemeier, R., Pernil, R., Moslavac, S., López-Igual, R., Maldener, I., Herrero, A., Schleiff, E., and Flores, E., The outer membrane of a heterocyst-forming cyanobacterium is a permeable barrier for uptake of metabolites that are exchanged between cells, Mol. Microbiol., 2009, vol. 74, p. 58.

    Article  CAS  PubMed  Google Scholar 

  80. Pernil, R., Picossi, S., Herrero, A., Flores, E., and Mariscal, V., Amino acid transporters and release of hydrophobic amino acids in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, Life, 2015, vol. 5, p. 1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Frain, K.M., Gangl, D., Jones, A., Zedler, J.A.Z., and Robinson, C., Protein translocation and thylakoid biogenesis in cyanobacteria, Biochim. Biophys. Acta, 2016, vol. 1857, p. 266.

    Article  CAS  PubMed  Google Scholar 

  82. Khaytan, B., Meeks, J., and Risser, D., Evidence that a modified type IV pilus-like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria, Mol. Microbiol., 2015, vol. 98, p. 1021.

    Article  CAS  Google Scholar 

  83. Flores, E. and Herrero, A., Compartmentalized function through cell differentiation in filamentous cyanobacteria, Nat. Rev. Microbiol., 2010, vol. 8, p. 39.

    Article  CAS  PubMed  Google Scholar 

  84. Camargo, S., Picossi, S., Corrales-Guerrero, L., Valladares, A., Arévalo, S., and Herrero, A., ZipN is an essential FtsZ membrane tether and contributes to the septal localization of SepJ in the filamentous cyanobacterium Anabaena,Sci. Rep., 2019, vol. 9: e2744. https://doi.org/10.1038/s41598-019-39336-615

    Article  Google Scholar 

  85. Flores, E., Picossi, S., Valladares, A., and Herrero, A., Transcriptional regulation of development in heterocyst forming cyanobacteria, Biochim. Biophys. Acta—Gene Regulatory Mechanisms, 2019, vol. 1862, p. 673. https://doi.org/10.1016/j.bbagrm.2018.04.006

    Article  CAS  Google Scholar 

  86. Yoon, H.S. and Golden, J.W., Heterocyst pattern formation controlled by a diffusible peptide, Science, 1998, vol. 282, p. 935.

    Article  CAS  PubMed  Google Scholar 

  87. Callahan, S.M. and Buikema, W.J., The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120, Mol. Microbiol., 2001, vol. 40, p. 941. https://doi.org/10.1046/j.1365-2958.2001.02437.x

    Article  CAS  PubMed  Google Scholar 

  88. Corrales-Guerrero, L., Mariscal, V., Flores, E., and Herrero, A., Functional dissection and evidence for intercellular transfer of the heterocyst-differentiation PatS morphogen, Mol. Microbiol., 2013, vol. 88, p. 1093. https://doi.org/10.1111/mmi.12244

    Article  CAS  PubMed  Google Scholar 

  89. Plominsky, A.M., Delherbe, N., Mandakovic, D., Riquelme, B., Gonzales, K., Bergman, B., Mariscal, V., and Vasquez, M., Intercellular transfer along the trichomes of the invasive terminal heterocyst forming cyanobacterium Cylindrosoermopsis raciborskii CS-505, FEMS Microbiol. Lett., 2015, vol. 362. https://doi.org/10.1093/femsle/fnu009

  90. Thomas, J., Meeks, J.C., Wolk, C.P., Shaffer, P.W., and Austin, C.M., Formation of glutamine from [13N] ammonia, [13N] dinitrigen, and [14C] glutamate by heterocysts isolated from Anabaena cylindrica Lemm., J. Bacteriol., 1977, vol. 129, p. 1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hodgkin, A.L. and Rushton, W.A.H., The electrical constants of a crustacean nerve fibre, Proc. R. Soc. London, Ser. B, 1946, vol. 133, p. 144.

    Google Scholar 

  92. Aslanidi, K.B., Potapova, T.V., and Shalapenok, A.A., Method for registration of photoelectric properties of elongated single- and multicellular microorganisms, in Pribory i laboratornoe oborudovanie dlya nauchnykh issledovanii po novym napravleniyam biologii i biotekhnologii (Instruments and Laboratory Equipment for Scientific Research in New Biological and Biotechnological Aspects), Pushchino, 1987, p. 100.

    Google Scholar 

  93. Aslanidi, K.B. and Shalapjenok, A.A., Energetics of local cell-to-cell interactions in phototrophic organisms, in Intercellular Communication: Proceedings in Nonlinear Science, Bukauskas, F., Ed., Manchester: Univ. Press, 1991, p. 12.

    Google Scholar 

  94. Aslanidi, K.B., Spectral measurements of the functional heterogeneity of cells and their organelles, Biophysics, 2015, vol. 60, p. 85.

    Article  CAS  Google Scholar 

  95. Magnuson, A., Heterocyst thylakoid bioenergetics, Life, 2019, vol. 9, no. 13. https://doi.org/10.3390/life9010013

    Article  CAS  PubMed Central  Google Scholar 

  96. Chapman, A.G. and Atkinson, D.E., Adenine nucleotide concentrations and turnover rates. Their correlation with biological activity in bacteria and yeast, Adv. Microb. Physiol., 1977, vol. 15, p. 253.

    Article  CAS  PubMed  Google Scholar 

  97. Loewenstein, W.R., Cell individuality and connectivity, an evolutionary compromise, in Individuality and Determinism, Fox, S.W., Ed., New York: Plenum Publ. Corp., 1984, p. 77.

    Google Scholar 

  98. Aslanidi, K.B., Potapova, T.V., and Chailakhyan, L.M., Energy transport via high permeability contact membranes, Biol. Membr., 1988, vol. 5, p. 613.

    Google Scholar 

  99. Bonner, J.T., The origin of multicellularity, Integr. Biol., 1998, vol. 1, p. 28.

    Google Scholar 

  100. Carroll, S.B., Chance and necessity: the evolution of morphological complexity and diversity, Nature, 2011, vol. 409, p. 1102.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Professor V.V. Aleshin and to Professor Yu.A. Koksharov for careful reading and discussion of the manuscript and for critical comments.

Funding

The study was supported by state program nos. AAAA-A17-117120570011-4 and АААА-А17-117120820043-7. It was also supported by the Russian Foundation for Basic Research (project no. 17-04-00412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Koksharova.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors. The authors declare that they have no conflict of interest.

Additional information

Translated by A. Bulychev

Abbreviations: MP—membrane potential; PIC—permeable intercellular contacts; PSI and PSII—photosystems I and II.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapova, T.V., Koksharova, O.A. Filamentous Cyanobacteria as a Prototype of Multicellular Organisms. Russ J Plant Physiol 67, 17–30 (2020). https://doi.org/10.1134/S102144372001015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144372001015X

Keywords:

Navigation