Skip to main content
Log in

Physiological Mechanism of Eichhornia crassipes in Inhibiting the Growth of Microcytisaeruginosa

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Water hyacinth (Eichhornia crassipes (Mart.) Solms), an invasive plant, is used to control algae-polluted water, but the mechanism among which is not clear. In this study, the allelopathic effects of water hyacinth on the growth of Microcytis aeruginosa were investigated. The physiological changes of M. aeruginosa such as chlorophyll content, superoxide dismutases (SODs), peroxidases (PODs), total protein contents (TPCs), and MDA contents were also determined. Our results showed that higher density of water hyacinth extracts and ethyl acetate fractions all showed significant allelopathic inhibition on the growth of M. aeruginosa. The ethyl acetate fraction considerably reduced the algae chlorophyll content. The higher concentration used of ethyl acetate fraction, the lower the chlorophyll content of algae. The activity of SODs and PODs were quite reduced after 10-day treatment by ethyl acetate fraction. The TPCs and MDA contents were also found to be decreased after 4-day treatment. It is inferred that water hyacinth inhibited the algal growth by released allelochemicals and affected diversity of biochemical and physiological attributes, and also lead to the membrane injury in the M. aeruginosa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Chislock, M.F., Doster, E., Zitomer, R.A., and Wilson, A.E., Eutrophication, causes, consequences, and controls in aquatic ecosystems, Nat. Edu. Knowl., 2013, vol. 4: 10.

    Google Scholar 

  2. Smith, V.H. and Schindler, D.W., Eutrophication science, where do we go from here? Trends Ecol. Evol., 2009, vol. 24, pp. 201–208.

    Article  PubMed  Google Scholar 

  3. Ullah, N., Haq, I.U., Safdar, N., and Mirza, B., Physiological and biochemical mechanisms of allelopathy mediated by the allelochemical extracts of Phytolacca latbenia (Moq.) H. Walter, Toxicol. Ind. Health, 2013, vol. 31, pp. 931–937.

    Article  CAS  PubMed  Google Scholar 

  4. Ervin, G.N. and Wetzel, R.G., An ecological perspective of allelochemical interference in land–water interface communities, Plant Soil, 2003, vol. 256, pp. 13–28.

    Article  CAS  Google Scholar 

  5. Jin, Z.H., Zhang, Y.Y., Dai, S.G., and Li, T.L., Isolation and identification of extracts of Eichhornia crassipes and their allelopathic effects on algae, Bull. Environ. Contam. Toxicol., 2003, vol. 71, pp. 1048–1052.

    Article  CAS  PubMed  Google Scholar 

  6. Sun, W.H., Yu, Z.W., and Yu, S.W., The harness of an eutrophic water body by water hyacinth, Acta Sci. Ci-rcumstan., 1989, vol. 9, pp. 188–195.

    CAS  Google Scholar 

  7. Watts, T. and Watts, R., Water hyacinths, Lancet, 1998, vol. 351: 1820.

    Article  CAS  PubMed  Google Scholar 

  8. Wu, X.X., Zhang, Z.Y., Chen, D.L., Zhang, J.S., Yang, W.B., and Jin, Y.G., Allelopathic effects of Eichhornia crassipes on the growth of Microcystis ae-ruginosa, J. Agric. Sci. Technol. A, 2012, vol. 12, pp. 1400–1406.

    Google Scholar 

  9. Hisashi, K.N., Kobayashi, A., Osamuo, O., Kimura, F., Fujji, F., and Suenaga, K., Phytotoxic substances with allelopathic activity may be central to the strong invasive potential of Brachiaria brizantha, J. Plant Physiol., 2014, vol. 171, pp. 525–530.

    Article  CAS  Google Scholar 

  10. Shanab, S.M.M., Shalaby, E.A., Lightfoot, D.A., and El-Shemy, H.A., Allelopathic effects of water hyacinth (Eichhornia crassipes), PLoS One, 2010, vol. 5: e13200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jeffrey, S.W. and Humphrey, G.F., New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pflanzen., 1975, vol. 167, pp. 191–194.

    Article  CAS  Google Scholar 

  12. Wright, S.J.L., A simple agar plate method, using micro-algae, for herbicide bio-assay or detection, Bull. Environ. Contam. Toxicol., 1975, vol. 14, pp. 65–70.

    Article  CAS  PubMed  Google Scholar 

  13. Beauchamp, C. and Fridovich, I., Superoxide dismutase, improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, pp. 276–287.

    Article  CAS  PubMed  Google Scholar 

  14. Hodges, D.M., Delong, J.M., Forney, C.F., and Prange, R.K., Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds, Planta, 1999, vol. 207, pp. 604–611.

    Article  CAS  Google Scholar 

  15. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  16. Batish, D.R., Singh, H.P., Setia, N., Kaur, S., and Kohli, R.K., Chemical composition and phytotoxicity of volatile essential oil from intact and fallen leaves of Eucalyptus citriodora, Z. Naurforsch. C, 2006, vol. 61, pp. 465–471.

    Article  CAS  Google Scholar 

  17. Jiang, Z.Y., Guo, P.Y., Chang, C.C., Gao, L.L., Li, S.X., and Wan, J.J., Effects of allelochemicals from Ficus microcarpa on Chlorella pyrenoidosa, Braz. Arch. Biol. Techn., 2014, vol. 57, pp. 595–605.

    Google Scholar 

  18. Yang, X.R., Li, X.Y., Zhou, Y.Y., Zheng, W., Yu, C.P., and Zheng, T.L., Novel insights into the algicidal ba-cterium DH77-1 killing the toxic dinoflagellate Al-exandrium tamarense, Sci. Total Environ., 2014, vol. 483, pp. 116–124.

    Article  CAS  Google Scholar 

  19. Mersie, W. and Singh, M., Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf, J. Chem. Ecol., 1993, vol. 19, pp. 1293–1301.

    Article  CAS  PubMed  Google Scholar 

  20. Einhellig, F.A., Mechanism of action of allelochemicals in allelopathy, Agron. J., 1996, vol. 88, pp. 886–893.

    Article  CAS  Google Scholar 

  21. Fabbro, C.D. and Prati, D., The relative importance of immediate allelopathy and allelopathic legacy in invasive plant species, Basic Appl. Ecol., 2015, vol. 16, pp. 28–35.

    Article  Google Scholar 

  22. Nakai, S., Inoue, Y., Hosomi, M., and Murakami, A., Growth inhibition of blue-green algae by allelopathic effects of macrophytes, Water Sci. Technol., 1999, vol. 39, pp. 47–53.

    Article  Google Scholar 

  23. Jang, M.H., Ha, K., and Takamura, N., Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica), Toxicon, 2007, vol. 49, pp. 727–733.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, S.L., Zhang, B., Dai, W., and Zhang, X.M., Oxidative damage and antioxidant responses in Mic-rocystis aeruginosa exposed to the allelochemical berberine isolated from golden thread, J. Plant Physiol., 2011, vol. 168, pp. 639–643.

    Article  CAS  PubMed  Google Scholar 

  25. Parvanova, D., Ivanov, S., Konstantinova, T., Karanov, E., Atanassov, A., Tsvetkov, T., Alexieva, V., and Djilianov, D., Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress, Plant Physiol. Biochem., 2004, vol. 42, pp. 57–63.

    Article  CAS  PubMed  Google Scholar 

  26. Masia, A., Physiological effects of oxidative stress in relation to ethylene in postharvest produce, in P-ostharvest Oxidative Stress in Horticultural Crops, Hodges, D.M., Ed., New York: Food Products, 2003, pp. 165–198.

    Google Scholar 

  27. Siddique, M.A.B. and Ismail, B.S., Allelopathic effects of Fimbristylis miliacea on the physiological activities of five Malaysian rice varieties, Aust. J. Crop Sci., 2013, vol. 7, pp. 2062–2067.

    Google Scholar 

  28. Anudechakul, C., Vangnai, A.S., and Ariyakanon, N., Removal of chlorpyrifos by water hyacinth (Eichhornia crassipes) and the role of a plant-associated bacterium, Int. J. Phytoremediation, 2015, vol. 17, pp. 678–685.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants from the Natural Science Foundation of Jiangsu Province (project no. BK2009188) and the Natural Science Foundation of Yangzhou University (project no. 2011CXJ075). We are grateful to Dr. Gang Chen for his assistance in conducting the experiments of physiological responses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. X. Wu.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

The article is published in the original.

Abbreviations: PODs—peroxidases; SODs—superoxide dismutases; TPCs—total protein contents.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X.X., Zhang, Z.Y. & Jin, Y.G. Physiological Mechanism of Eichhornia crassipes in Inhibiting the Growth of Microcytisaeruginosa. Russ J Plant Physiol 66, 433–439 (2019). https://doi.org/10.1134/S1021443719030178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719030178

Keywords:

Navigation