Skip to main content
Log in

The ABA- and Stress-Induced Expression of the ArabidopsisthalianaAt4g0180 Gene Is Determined by the Cis-Elements Responsible for Binding the ABA-Dependent Trans-Factors

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In silico analysis of the promoter region of the At4g01870 gene of Arabidopsis thaliana (L.) Heynh. showed the presence of ABRE, W-box, RAV1-A, MYB, and LFY cis-elements in the sequence. These regulatory motifs bind the transcription factors involved in responses to abscisic acid (ABA) and stresses. Stable transgenic plants carrying the β-glucuronidase gene under the control of the 5'-deletion fragments of the At4g01870 promoter were obtained. According to the results of histochemical staining of transformants, gene expression was induced by abiotic stress and was most significant in the conductive tissues of the root, leaves, and sepals as well as in flowers. The study of At4g01870 gene expression by RT-PCR confirmed that the gene transcript content increased after the exposure of plants to a solution of NaCl or at 37°C and after ABA treatment; however, hypothermia almost unchanged the level of accumulation of the transcripts. Along with ABA, expression of the At4g01870 gene was induced by indolylacetic and salicylic acids and ethylene precursor 1-aminocyclopropane-1-carboxylic acid; it was hardly regulated by methyl jasmonate and inhibited by cytokinin. The TolB-like protein, encoded by the At4g01870 gene, functions as a type of platform, based on which protein complexes are assembled. Given the previously identified ABA-binding properties of the protein At4g01870 and the presence of the ABA-dependent cis-elements in the promoter of its coding gene, it can be assumed that the protein encoded by the At4g01870 gene allows to control the hormonal signals in the cell, providing a structural platform for the interaction of specific effector proteins, trans-factors and ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R.K., Kumar, V., Verma, R., Upadhyay, R.G., Pandey, M., and Sharma, S., Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects, Front. Plant Sci., 2017, vol. 8: 161.

    PubMed  PubMed Central  Google Scholar 

  2. Hubbard, K.E., Nishimura, N., Hitomi, K., Getzoff, E.D., and Schroeder, J.I., Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions, Genes Dev., 2010, vol. 24, pp. 1695–1708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.Y., Cutler, S.R., Sheen, J., Rodriguez, P.L., and Zhu, J.K., In vitro reconstitution of an abscisic signalling pathway, Nature, 2009, vol. 462, pp. 660–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fujita, Y., Yoshida, T., and Yamaquchi-Shinozaki, K., Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants, Physiol. Plant., 2013, vol. 147, pp. 15–27.

    Article  CAS  PubMed  Google Scholar 

  5. Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., and Lepiniec, L., MYB transcription factors in Arabidopsis, Trends Plant Sci., 2010, vol. 15, pp. 573–581.

    Article  CAS  PubMed  Google Scholar 

  6. Bakshi, M. and Oelmüller, R., WRKY transcription factors: Jack of many trades in plants, Plant Signal. Behav., 2014, vol. 9: e27700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Demidenko, A.V., Kudryakova, N.V., Karavaiko, N.N., Kazakov, A.S., Cherepneva, G.N., Shevchenko, G.V., Permyakov, S.E., Kulaeva, O.N., Oelmüller, R., and Kusnetsov, V.V., The ABA-binding protein AA1 of Lu-pinus luteus is involved in ABA-mediated responses, Russ. J. Plant Physiol., 2015, vol. 62, pp. 161–170.

    Article  CAS  Google Scholar 

  8. Bonsor, D.A., Hecht, O., Vankemmelbeke, M., Sharma, A., Krachler, A.M., Housden, N.G., Lilly, K.J., Moore, G.R., and Kleanthous, C., Allosteric β-propeller signaling in TolB and its manipulation by translocating colicins, EMBO J., 2009, vol. 28, pp. 2846–2857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartashevich, D.A., Karavaiko, N.N., and Kusnetsov, V.V., The novel ABA-binding protein encoded by At4g01870 gene in A. thaliana is able to interact with RNA in vitro, Dokl. Biochem. Biophys., 2014, vol. 457, pp. 128–131.

    Article  CAS  PubMed  Google Scholar 

  10. Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D’Angelo, C., Bornberg-Bauer, E., Kudla, J., and Harter, K., The AtGenE-xpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses, Plant J., 2007, vol. 50, pp. 347–363.

    Article  CAS  PubMed  Google Scholar 

  11. Clough, S.J. and Bent, A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J., 1988, vol. 16, pp. 735–743.

    Article  Google Scholar 

  12. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.V., GUS-fusions: beta-glucuronidase as a sensitive and versalite gene fusion marker in higher plants, EMBO J., 1987, vol. 6, pp. 3901–3907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vitha, S., Benes, K., Phillips, J.P., and Gartland, K.M.A., Histochemical GUS analysis, Methods Mol. Biol., 1995, vol. 44, pp. 185–193.

    CAS  PubMed  Google Scholar 

  14. Danilova, M.N., Kudryakova, N.V., Voronin, P.Yu., Oelmüller, R., Kusnetsov, V.V., and Kulaeva, O.N., Membrane receptors of cytokinin and their regulatory role in Arabidopsis thaliana plant response to photooxidative stress under conditions of water deficit, Russ. J. Plant Physiol., 2014, vol. 61, pp. 434–442.

    Article  CAS  Google Scholar 

  15. Yilmaz, A., Mejia-Guerra, M.K., Kurz, K., Liang, X., Welch, L., and Grotewold, E., AGRIS: Arabidopsis Gene Regulatory Information Server, an update, Nucleic Acids Res., 2011, vol. 39, database issue, pp. 1118–1122.

  16. Kim, J.B., Kang, J.Y., and Kim, S.Y., Over-expression of a transcription factor regulating ABA responsive gene expression confers multiple stress tolerance, Plant Biotech. J., 2004, vol. 2, pp. 459–466.

    Article  CAS  Google Scholar 

  17. Tuteja, N., Abscisic acid and abiotic stress, Plant Signal. Behav., 2007, vol. 2, pp. 135–138.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Roy, S., Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome, Plant Signal. Behav., 2016, vol. 11: e1117723.

    Article  CAS  PubMed  Google Scholar 

  19. Shinozaki, K. and Yamaguchi-Shinozaki, K., Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways, Curr. Opin. Plant Biol., 2000, vol. 3, pp. 217–223.

    Article  CAS  PubMed  Google Scholar 

  20. Lamb, R.S., Hill, T.A., Tan, Q.K.G., and Irish, V.F., Regulation of APETALA3 floral homeotic gene expression by meristem identity genes, Development, 2002, vol. 129, pp. 2079–2086.

    CAS  PubMed  Google Scholar 

  21. Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E.M., LEAFY controls floral meristem identity in Arabidopsis, Cell, 1992, vol. 69, pp. 643–659.

    Article  Google Scholar 

  22. Feng, C.Z., Chen, Y., Wang, C., Kong, Y.H., Wu, W.H., and Chen, Y.F., Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development, Plant J., 2014, vol. 80, pp. 654–668.

    Article  CAS  PubMed  Google Scholar 

  23. Fu, M., Kang, H.K., Son, S.H., Kim, S.K., and Nam, K.H., A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA, Plant Cell Physiol., 2014, vol. 55, pp. 1892–1904.

    Article  CAS  PubMed  Google Scholar 

  24. Hu, Y.X., Wang, Y.H., Liu, X.F., and Li, J.Y., Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development, Cell Res., 2004, vol. 14, pp. 8–15.

    Article  CAS  PubMed  Google Scholar 

  25. Woo, H.R., Kim, J.H., Kim, J.Y., Kim, J.G., Lee, U., Song, I.J., Kim, J.H., Lee, H.Y., Nam, H.G., and Lim, P.O., The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis, J. Exp. Bot., 2010, vol. 61, pp. 3947–3957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mueller, S., Hilbert, B., Dueckershoff, K., Roitsch, T., Krischke, M., Mueller, M.J., and Berger, S., General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in A-rabidopsis, Plant Cell, 2008, vol. 20, pp. 68–85.

    Article  CAS  Google Scholar 

  27. Shang, Y., Yan, L., Liu, Z.Q., Cao, Z., Mei, C., Xin, Q., Wu, F.Q., Wang, X.F., Du, S.Y., Jiang, T., Zhang, X.F., Zhao, R., Sun, H.L., Liu, R., Yu, Y.T., et al., The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition, Plant Cell, 2010, vol. 22, pp. 1909–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vinogradov, N.V., Danilova, M.V., Kudryakova, N.V., Kusnetsov, V.V., and Kulaeva, O.N., ABA-dependent regulation of the expression of AA1 homologs (abscisic acid activated 1) in A. thaliana mutants with impaired synthesis or transduction of ABA signal, Mater. Mezhd. nauch. konf. “Fiziologiya rastenii—teoreticheskaya osnova innovatsionnykh agro- i fitobiotekhnologii” (Proc. Int. Sci. Conf. “Plant Physiology—Theoretical Basis for Innovative Agro- and Phytobiotechnologies”), Kaliningrad, 2014, pp. 33–35.

  29. Skubacz, A., Daszkowska-Golec, A., and Szarejko, I., The role and regulation of ABI5 (ABA-insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk, Front. Plant Sci., 2016, vol. 7: 1884.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 14-14-00584).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kudryakova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

This article is devoted to professor Olga Nikolaevna Kulayeva to the outstanding plant physiologist and biochemist in connection with 90-year anniversary.

Translated by V. Mittova

Abbreviations: ABA—abscisic acid; ACC—1-aminocyclopropane-1-carboxylic acid; MS—Murashige and Skoog nutrient medium; RT-PCR—real-time polymerase chain reaction after reverse transcription.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradov, N.V., Andreeva, A.A., Danilova, M.N. et al. The ABA- and Stress-Induced Expression of the ArabidopsisthalianaAt4g0180 Gene Is Determined by the Cis-Elements Responsible for Binding the ABA-Dependent Trans-Factors . Russ J Plant Physiol 66, 521–529 (2019). https://doi.org/10.1134/S102144371902016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144371902016X

Keywords:

Navigation