Skip to main content
Log in

Genetic Engineering-Based Modern Approaches to Enhance Crop Resistance to Pests

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Creation of genetically modified plants with an incorporated system protecting them from pests is one of the main goals in modern agricultural biotechnology. From the mid-1990s to the present, the majority of such transgenic crops is represented by carriers of the insecticidal Cry and Vip genes of the bacterium Bacillus thuringiensis. However, a tendency to change this strategy in favor of the incorporated defense systems based on RNA interference has become evident during the recent decade. Evolutional paths of phytophages' responses to insecticidal GM plants that are armed with these genetic constructions are discussed in the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Current and Previously Registered Section 3 Plant-Incorporated Protectant (PIP) Registrations, EPA, 2017. https://www.epa.gov/ingredients-used-pesticide-products/current-and-previously-registered-section-3-plant-incorporated

  2. Global Status of Commercialized Biotech/GM Crops: 2016, ISAAA Briefs, Brief 52. http://www.isaaa.org/ resources/publications/briefs/52/download/isaaa-brief-52-2016.pdf

  3. Kreuze, J.F. and Valkonen, J.P., Utilization of engineered resistance to viruses in crops of the developing world, with emphasis on sub-Saharan Africa, Curr. Opin. Virol., 2017, vol. 26, pp. 90–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Codon Usage Database. http://www.kazusa.or.jp/codon/

  5. Perlak, F.J., Fuchs, R.L., Dean, D.A., McPherson, S.L., and Fischhoff, D.A., Modification of the coding sequence enhances plant expression of insect control protein genes, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 3324–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tabashnik, B.E., Gould, F., and Carrière, Y., Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability, J. Evol. Biol., 2004, vol. 17, pp. 904–912.

    Article  CAS  PubMed  Google Scholar 

  7. Gassmann, A.J., Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field, J. Invertebr. Pathol., 2012, vol. 110, pp. 287–293.

    Article  PubMed  Google Scholar 

  8. Andow, D.A., Pueppke, S.G., Schaafsma, A.W., Gassmann, A.J., Sappington, T.W., Meinke, L.J., Mitchell, P.D., Hurley, T.M., Hellmich, R.L., and Porter, R.P., Early detection and mitigation of resistance to Bt maize by western corn rootworm (Coleoptera: Chrysomelidae), J. Econ. Entomol., 2016, vol. 109, pp. 1–12.

    Article  PubMed  Google Scholar 

  9. Gassmann, A.J., Resistance to Bt maize by western corn rootworm: insights from the laboratory and the field, Insect Sci., 2016, vol. 15, pp. 111–115.

    Google Scholar 

  10. Hellmich, R.L., Siegfried, B.D., Sears, M.K., Stanley-Horn, D.E., Daniels, M.J., Mattila, H.R., Spencer, T., Bidne, K.G., and Lewis, L., Monarch larvae sensitivity to Bacillus thuringiensis purified proteins and pollen, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 11925–11930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Darvas, B., Csóti, A., Gharib, A., Peregovits, L., Ronkay, L., Lauber, É., and Polgár, L.A., Data for the risk analysis in Hungary of Bt maize pollen and larvae of protected butterfly species, Növényvédelem, 2004, vol. 40, pp. 441–449.

  12. Hofmann, F., Epp, R., Kalchschmid, A., Kratz, W., Kruse, L., Kuhn, U., Maisch, B., Müller, E., Ober, S., Radtke, J., Schlechtriemen, U., Schmidt, G., Schröder, W., Ohe, W.V.D., Vögel, R., Wedl, N., and Wosniok, W., Monitoring of Bt-maize pollen exposure in the vicinity of the nature reserve Ruhlsdorfer Bruch in northeast Germany 2007 to 2008, Environ. Sci. Eur., 2010, vol. 22, pp. 229–251.

    Article  Google Scholar 

  13. Hofmann, F., Otto, M., and Wosniok, W., Maize pollen deposition in relation to distance from the nearest pollen source under common cultivation—results of 10 years of monitoring (2001 to 2010), Environ. Sci. Eur., 2014, vol. 26: 24.

    Article  Google Scholar 

  14. Saxena, D., Flores, S., and Stotzky, G., Vertical movement in soil of insecticidal Cry1Ab protein from Bacillus thuringiensis, Soil Biol. Biochem., 2002, vol. 34, pp. 111–120.

    Article  CAS  Google Scholar 

  15. Van Frankenhuyzen, K., Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins, J. Invertebr. Pathol., 2013, vol. 114, pp. 76–85.

    Article  CAS  PubMed  Google Scholar 

  16. Bai, Y.Y., Jiang, M.X., and Cheng, J.A., Effects of transgenic cry1Ab rice pollen on fitness of Propylaea japonica (Thunberg), J. Pest. Sci., 2005, vol. 78, pp. 123–128.

    Article  Google Scholar 

  17. Schmidt, J.E.U., Braun, C.U., Whitehouse, L.P., and Hilbeck, A., Effects of activated Bt transgene products (Cry1Ab, Cry3Bb) on immature stages of the ladybird Adalia bipunctata in laboratory ecotoxicity testing, Arch. Environ. Contam. Toxicol., 2009, vol. 56, pp. 221–228.

    Article  CAS  PubMed  Google Scholar 

  18. Hilbeck, A., McMillan, J.M., Meier, M., Humbel, A., Schlaepfer-Miller, J., and Trtikova, M., A controversy re-visited: is the coccinellid Adalia bipunctata adversely affected by Bt toxins? Environ. Sci. Eur., 2012, vol. 24: 10.

    Article  CAS  Google Scholar 

  19. Fernandez-Cornejo, J. and Wechsler, S.J., Recent Trends in GE Adoption, US Dep. Agric. Econ. Res. Serv., 2014. http://www.ers.usda.gov/webdocs/DataFiles/Adoption_of_Genetically_Engineered_Crops_ in_the_US_17963//alltablesGEcrops.csv

  20. Zhang, H., Wen, T., Zhao, J., Jin, L., Yang, J., Liu, C., Yang, Y., Wu, S., Wu, K., Cui, J., Tabashnik, B.E., and Wu, Y., Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from china, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 10275–10280.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gassmann, A.J., Petzold-Maxwell, J.L., Clifton, E.H., Dunbar, M.W., Hoffmann, A.M., Ingber, D.A., and Keweshan, R.S., Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. 5141–5146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu, Y., Wu, K., Jiang, Y., Xia, B., Li, P., Feng, H., Wyckhuys, K.A.G., and Guo, Y., Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China, Science, 2010, vol. 328, pp. 1151–1154.

    Article  CAS  PubMed  Google Scholar 

  23. Catarino, R., Ceddia, G., Areal, F.J., and Park, J., The impact of secondary pests on Bacillus thuringiensis (Bt) crops, Plant Biotechnol. J., 2015, vol. 13, pp. 601–612.

    Article  CAS  PubMed  Google Scholar 

  24. Event Name: 5307 × MIR604 × Bt11 × TC1507 × GA21 × MIR162. http://www.isaaa.org/gmapprovaldatabase/ event/default.asp?EventID=331

  25. Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A., and Koziel, M.G., Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 5389–5394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sattar, S. and Maiti, M.K., Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest, J. Microbiol. Biotechnol., 2011, vol. 21, pp. 937–946.

    Article  CAS  PubMed  Google Scholar 

  27. Palma, L., Muñoz, D., Berry, C., Murillo, J., and Caballero, P., Bacillus thuringiensis toxins: an overview of their biocidal activity, Toxins, 2014, vol. 6, pp. 3296–3325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kunthic, T., Watanabe, H., Kawano, R., Tanaka, Y., Promdonkoy, B., Yao, M., and Boonserm, P., pH regulates pore formation of a protease activated Vip3Aa from Bacillus thuringiensis, Biochim. Biophys. Acta—Biomembr., 2017, vol. 1859, pp. 2234–2241.

  29. Lee, M.K., Walters, F.S., Hart, H., Palekar, N., and Chen, J., The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin, Appl. Environ. Microbiol., 2003, vol. 69, pp. 4648–4657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nelson, K.L., Brodsky, R.A., and Buckley, J.T., Channels formed by subnanomolar concentrations of the toxin aerolysin trigger apoptosis of T-lymphomas, Cell. Microbiol., 1999, vol. 1, pp. 69–74.

    Article  CAS  PubMed  Google Scholar 

  31. Llewellyn, D.J., Mares, C.L., and Fitt, G.P., Field performance and seasonal changes in the efficacy against Helicoverpa armigera (Hübner) of transgenic cotton expressing the insecticidal protein Vip3A, Agric. For. Entomol., 2007, vol. 9, pp. 93–101.

    Article  Google Scholar 

  32. Kurtz, R.W., McCaffery, A., and O’Reilly, D., Insect resistance management for Syngenta’s VipCot(TM) transgenic cotton, J. Invertebr. Pathol., 2007, vol. 95, pp. 227–230.

    Article  PubMed  Google Scholar 

  33. Wu, J., Luo, X., Zhang, X., Shi, Y., and Tian, Y., Development of insect-resistant transgenic cotton with chimeric TVip3A* accumulating in chloroplasts, Transgenic Res., 2011, vol. 20, pp. 963–973.

    Article  CAS  PubMed  Google Scholar 

  34. Foster, S.J., Park, T.-H., Pel, M.A., Brigneti, G., Ś-liwka, J., Jagger, L., Vossen, E.A.G., and Jones, J.D.G., Rpi-vnt1.1, a Tm-2 2 homolog from Solanum venturii, confers resistance to potato late blight, Mol. Plant–Microbe Interact., 2009, vol. 22, pp. 589–600.

    Article  CAS  PubMed  Google Scholar 

  35. Nielsen, K.M., Transgenic organisms—time for conceptual diversification? Nat. Biotechnol., 2003, vol. 21, pp. 227–228.

    Article  CAS  PubMed  Google Scholar 

  36. Dale, J., James, A., Paul, J.-Y., Khanna, H., Smith, M., Peraza-Echeverria, S., Garcia-Bastidas, F., Kema, G., Waterhouse, P., Mengersen, K., and Harding, R., Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4, Nat. Commun., 2017, vol. 8: 1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fire, A.Z., Gene silencing by double-stranded RNA, Cell Death Differ., 2007, vol. 14, pp. 1998–2012.

    Article  CAS  PubMed  Google Scholar 

  38. Abel, P.P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T., and Beachy, R.N., Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene, Science, 1986, vol. 232, pp. 738–743.

    Article  CAS  PubMed  Google Scholar 

  39. Price, D.R. and Gatehouse, J.A., RNAi-mediated crop protection against insects, Trends Biotechnol., 2008, vol. 26, pp. 393–400.

    Article  CAS  PubMed  Google Scholar 

  40. Mao, Y.B., Cai, W.J., Wang, J.W., Hong, G.J., Tao, X.Y., Wang, L.J., Huang, Y.P., and Chen, X.Y., Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol, Nat. Biotechnol., 2007, vol. 25, pp. 1307–1313.

    Article  CAS  PubMed  Google Scholar 

  41. Zha, W., Peng, X., Chen, R., Du, B., Zhu, L., and He, G., Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the Hemipteran insect Nilaparvata lugens, PLoS One, 2011, vol. 6: e20504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiong, Y., Zeng, H., Zhang, Y., Xu, D., and Qiu, D., Silencing the HaHR3 gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development, Int. J. Biol. Sci., 2013, vol. 9, pp. 370–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kumar, P., Pandit, S.S., Steppuhn, A., and Baldwin, I.T., Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46's role in a nicotine-mediated antipredator herbivore defense, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. 1245–1252.

    Article  CAS  PubMed  Google Scholar 

  44. Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., and Roberts, J., Control of coleopteran insect pests through RNA interference, Nat. Biotechnol., 2007, vol. 25, pp. 1322–1326.

    Article  CAS  PubMed  Google Scholar 

  45. Prentice, K., Christiaens, O., Pertry, I., Bailey, A., Niblett, C., Ghislain, M., Gheysen, G., and Smagghea, G., RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil Cylas puncticollis (Coleoptera: Brentidae), Pest. Manag. Sci., 2017, vol. 73, pp. 44–52.

    Article  CAS  PubMed  Google Scholar 

Download references

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Viktorov.

Additional information

Translated by A. Aver’yanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viktorov, A.G. Genetic Engineering-Based Modern Approaches to Enhance Crop Resistance to Pests. Russ J Plant Physiol 66, 1–9 (2019). https://doi.org/10.1134/S1021443719010187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719010187

Keywords:

Navigation