Skip to main content
Log in

Computational identification of miRNA genes and their targets in mulberry

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNA) are a class of tiny non protein coding and regulatory RNA molecules about 18 to 26 nt in length. miRNA regulate gene expression via the degradation or translational inhibition of their target mRNAs. Nucleotide sequences of miRNAs are highly conserved among various organisms; this forms the key feature behind the identification of miRNAs in plant species by homology alignment. So far, little is known about miRNA in mulberry (Morus alba L.) species. In our study, a computational method was used for detection of mulberry miRNAs. A total of six miRNAs were identified. The six miRNAs may regulate twenty-two potential targets, which are predicted to encode transcription factors that regulate plant development, signaling, and metabolism. To validate the prediction of miRNAs in mulberry, a RT-PCR experimental method was performed and five of these miRNAs were found to be expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RISC:

RNA-induced silencing complex

RT-PCR:

reverse transcription polymerase chain reaction

ESTs:

expressed sequence tags

GSSs:

genomic survey sequences

NCBI:

National Center for Biotechnology Information

References

  1. Filipowicz, W., Jaskiewicz, L., Kolb, F.A., and Pillai, R.S., Post-transcriptional gene silencing by siRNAs and miRNAs, Curr. Opin. Struct. Biol., 2005, vol. 15, pp. 331–341.

    Article  CAS  PubMed  Google Scholar 

  2. Djuranovic, S., Nahvi, A., and Green, R., A parsimonious model for gene regulation by miRNAs, Science, 2011, vol. 331, pp. 550–553.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Lu, X.Y. and Huang, X.L., Plant miRNAs and abiotic stress responses, Biochem. Biophys. Res. Commun., 2008, vol. 368, pp. 458–462.

    Article  CAS  PubMed  Google Scholar 

  4. Liu, Q. and Chen, Y.Q., Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response, Biochem. Biophys. Res. Commun., 2009, vol. 384, pp. 1–5.

    Article  CAS  PubMed  Google Scholar 

  5. Boss, I.W. and Renne, R., Viral miRNAs: tools for immune evasion, Curr. Opin. Microbiol., 2010, vol. 13, pp. 540–545.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ichimura, A., Ruike, Y., Terasawa, K., and Tsujimoto, G., miRNAs and regulation of cell signaling, FEBS J., 2011, vol. 278, pp. 1610–1618.

    Article  CAS  PubMed  Google Scholar 

  7. Weber, M.J., New human and mouse microRNA genes found by homology search, FEBS J., 2005, vol. 272, pp. 59–73.

    Article  CAS  PubMed  Google Scholar 

  8. Kim, H.J., Cui, X.S., Kim, E.J., Kim, W.J., and Kim, N.H., New porcine microRNA genes found by homology search, Genome, 2006, vol. 49, pp. 1283–1286.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, X.J., Reyes, J.L., Chua, N.H., and Gaasterland, T., Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets, Genome Biol., 2004, vol. 5, p. R65.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Dezulian, T., Remmert, M., Palatnik, J.F., Weigel, D., and Huson, D.H., Identification of plant microRNA homologs, Bioinformatics, 2006, vol. 22, pp. 359–360.

    Article  CAS  PubMed  Google Scholar 

  11. Sahu, S., Khushwaha, A., and Dixit, R., Computational identification of miRNAs in medicinal plant Senecio vulgaris (Groundsel), Bioinformation, 2011, vol. 7, pp. 375–378.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Wan, P., Wu, J., Zhou, Y., Xiao, J., Feng, J., Zhao, W., Xiang, S., Jiang, G., and Chen, J.Y., Computational analysis of drought stress-associated miRNAs and miRNA co-regulation network in Physcomitrella patens, Genom. Proteom. Bioinform., 2011, vol. 9, pp. 37–44.

    Article  CAS  Google Scholar 

  13. Adai, A., Johnson, C., Mlotshwa, S., Archer-Evans, S., Manocha, V., Vance, V., and Sundaresan, V., Computational prediction of miRNAs in Arabidopsis thaliana, Genome Res., 2005, vol. 15, pp. 78–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Sunkar, R., Girke, T., Jain, P.K., and Zhu, J.K., Cloning and characterization of microRNAs from rice, Plant Cell, 2005, vol. 17, pp. 1397–1411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chen, H.M., Li, Y.H., and Wu, S.H., Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 3318–3323.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ram, G. and Sharma, A.D., In silico analysis of putative miRNAs and their target genes in sorghum (Sorghum bicolor), Int. J. Bioinform. Res. Appl., 2013, vol. 9, pp. 349–364.

    Article  CAS  PubMed  Google Scholar 

  17. Srivastava, S., Kapoor, R., Thathola, A., and Srivastava, R.P., Mulberry (Morus alba) leaves as human food: a new dimension of sericulture, Int. J. Food Sci. Nutr., 2003, vol. 54, pp. 411–416.

    Article  PubMed  Google Scholar 

  18. Yang, Y., Zhang, T., Xiao, L., and Chen, R.Y., Two novel flavanes from the leaves of Morus alba L., J. Asian Nat. Prod. Res., 2010, vol. 12, pp. 194–198.

    Article  CAS  PubMed  Google Scholar 

  19. Huang, Y., Zou, Q., Tang, S.M., Wang, L.G., and Shen, X.J., Computational identification and characteristics of novel microRNAs from the silkworm (Bombyx mori L.), Mol. Biol. Rep., 2010, vol. 37, pp. 3171–3176.

    Article  CAS  PubMed  Google Scholar 

  20. Xu, J.H., Li, F., and Sun, Q.F., Identification of microRNA precursors with support vector machine and string kernel, Genom. Proteom. Bioinform., 2008, vol. 6, pp. 121–128.

    Article  CAS  Google Scholar 

  21. Sunkar, R. and Jagadeeswaran, G., In silico identification of conserved microRNAs in large number of diverse plant species, BMC Plant Biol., 2008, vol. 8, p. 37.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., Lao, K.Q., and Guegler, K.J., Real-time quantification of microRNAs by stem-loop RT-PCR, Nucleic Acids Res., 2005, vol. 33: e179.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Fiedler, S.D., Carletti, M.Z., and Christenson, L.K., Quantitative RT-PCR methods for mature microRNA expression analysis, Methods Mol. Biol., 2010, vol. 630, pp. 49–64.

    Article  CAS  PubMed  Google Scholar 

  24. Barozai, M.Y. and Husnain, T., Identification of biotic and abiotic stress up-regulated ESTs in Gossypium arboreum, Mol. Biol. Rep., 2012, vol. 39, pp. 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  25. Qiu, C.X., Xie, F.L., Zhu, Y.Y., Guo, K., Huang, S.Q., Nie, L., and Yang, Z.M., Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags, Gene, 2007, vol. 395, pp. 49–61.

    Article  CAS  PubMed  Google Scholar 

  26. Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, W. and Sun, Z., Random local neighbor joining: a new method for reconstructing phylogenetic trees, Mol. Phylogenet. Evol., 2008, vol. 47, pp. 117–128.

    Article  CAS  PubMed  Google Scholar 

  28. Min, H. and Yoon, S., Got target? Computational methods for microRNA target prediction and their extension, Exp. Mol. Med., 2010, vol. 42, pp. 233–244.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Huang.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zou, Q. & Wang, Z.B. Computational identification of miRNA genes and their targets in mulberry. Russ J Plant Physiol 61, 537–542 (2014). https://doi.org/10.1134/S1021443714040104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443714040104

Keywords

Navigation