Skip to main content
Log in

Partial suppression of gene encoding proline dehydrogenase enhances plant tolerance to various abiotic stresses

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The role of gene of proline dehydrogenase (PDH) in the maintenance of stress tolerance was investigated using the model transgenic plants of tobacco (Nicotiana tabacum L.) carrying an antisense suppressor of PDH gene (a fragment of Arabidopsis PDH gene under the control of cauliflower mosaic virus 35S promoter in antisense orientation) and notable for a low activity of PDH and elevated content of proline. The progeny of transgenic plants belonging to the 5th generation (T5) with partially suppressed PDH activity was more resistant to various types of stress as compared with the control plants of tobacco, cv. Petit Havana SR-1 (SR1). The seedlings of transgenic lines cultured in Petri dishes on agar media supplemented with stress agents were resistant to high NaCl concentrations (200–300 mM) and water deficit simulated by an increased agar content in the medium (14 g/l) as compared to the control seedlings of cv. SR1. Juvenile plants of transgenic lines grown in pots filled with a mixture of vermiculite and perlite also manifested the higher resistance to water deficit and low temperatures (2°C and −2°C) than the control plants. Thus, the partial PDH suppression correlated with an increase in nonspecific resistance to different types of abiotic stress: salinity, water deficit, and low temperatures. Such transgenic lines of tobacco are promising genetic models for thorough investigation of molecular mechanisms of stress resistance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

benzyladenine

Km:

kanamycin

PDH:

proline dehydrogenase

References

  1. Kuznetsov, Vl.V. and Shevyakova, N.I., Proline under Stress: Biological Role, Metabolism, and Regulation, Russ. J. Plant Physiol., 1999, vol. 46, pp. 274–289.

    CAS  Google Scholar 

  2. Verbruggen, N. and Hermans, C., Proline Accumulation in Plants: A Review, Amino Acids, 2008, vol. 35, pp. 753–759.

    Article  PubMed  CAS  Google Scholar 

  3. Radyukina, N.L., Shashukova, A.V., Shevyakova, N.I., and Kuznetsov, Vl.V., Effects of Various Iron Supply on Oxidative Stress Development and Ferritin Formation in the Common Ice Plants, Russ. J. Plant Physiol., 2008, vol. 55, pp. 649–656.

    Article  CAS  Google Scholar 

  4. Szabados, L. and Savoure, A., Proline: A Multifunctional Amino Acid, Trends Plant Sci., 2010, vol. 15, pp. 89–97.

    Article  PubMed  CAS  Google Scholar 

  5. Lehmann, S., Funck, D., Szabados, L., and Rentsch, D., Proline Metabolism and Transport in Plant Development, Amino Acids, 2010, vol. 39, pp. 949–962.

    Article  PubMed  CAS  Google Scholar 

  6. Sreenivasulu, N., Sopory, S.K., and Kavi, Kishor, P.B., Deciphering the Regulatory Mechanisms of Abiotic Stress Tolerance in Plants by Genomic Approaches, Gene, 2007, vol. 388, pp. 1–13.

    Article  PubMed  CAS  Google Scholar 

  7. Kavi Kishor, P.B., Hong, Z., Miao, G.-H., Hu, C.-A.A., and Verma, D.P.S., Overexpression of a Delta-1-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants, Plant Physiol., 1995, vol. 108, pp. 1387–1394.

    Google Scholar 

  8. Xin, Z. and Browse, J., Eskimo1 Mutants of Arabidopsis Are Constitutively Freezing-Tolerant, Proc. Natl. Acad. Sci. USA., 1998, vol. 95, pp. 7799–7804.

    Article  PubMed  CAS  Google Scholar 

  9. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K., Antisense Suppression of Proline Degradation Improves Tolerance to Freezing and Salinity in Arabidopsis thaliana, FEBS Lett., 1999, vol. 461, pp. 205–210.

    Article  PubMed  CAS  Google Scholar 

  10. Konstantinova, T., Parvanova, D., Atanassov, A., and Djilianov, D., Freezing Tolerant Tobacco, Transformed to Accumulate Osmoprotectants, Plant Sci., 2002, vol. 163, pp. 157–164.

    Article  CAS  Google Scholar 

  11. Verdoy, D., Coba de la Peña, T., Redondo, F.J., Lucas, M.M., and Pueyo, J.J., Transgenic Medicago truncatula Plants That Accumulate Proline Display Nitrogen-Fixing Activity with Enhanced Tolerance to Osmotic Stress, Plant Cell Environ., 2006, vol. 29, pp. 1913–1923.

    Article  PubMed  CAS  Google Scholar 

  12. Mokhamed, A.M., Raldugina, G.N., Kholodova, V.P., and Kuznetsov, Vl.V., Osmolyte Accumulation in Different Rape Genotypes under Sodium Chloride Salinity, Russ. J. Plant Physiol., 2006, vol. 53, pp. 649–655.

    Article  CAS  Google Scholar 

  13. Mokhamed, A.M., Titov, S.E., Kochetov, A.V., Raldugina, G.N., Kholodova, V.P., and Kuznetsov, Vl.V., Physiological and Molecular Characteristics of Transgenic Rape Plants with Antisense Suppressor of Proline Dehydrogenase Gene, Mater. IX Mezhd. konf. molodykh botanikov v Sankt-Peterburge (Proc. IX Int. Conf. of Young Botanists, St. Petersburg), St. Petersburg, 2006, pp. 201–202.

  14. Maggio, A., Bressan, R.A., Hasegawa, P.M., and Locy, R.D., Moderately Increased Proline Level Does Not Alter Osmotic Stress Tolerance, Physiol. Plant., 1997, vol. 101, pp. 240–246.

    Article  CAS  Google Scholar 

  15. Mani, S., van de Cotte, B., van Montagu, M., and Verbruggen, N., Altered Level of Proline Dehydrogenase Causes Hypersensitivity to Proline and Its Analogs in Arabidopsis, Plant Physiol., 2002, vol. 128, pp. 73–83.

    Article  PubMed  CAS  Google Scholar 

  16. Ribarits, A., Abdullaev, A., Tashpulatov, A., Richter, A., Heberle-Bors, E., and Touraev, A., Two Tobacco Proline Dehydrogenases Are Differentially Regulated and Play a Role in Early Plant Development, Planta, 2007, vol. 225, pp. 1313–1324.

    Article  PubMed  CAS  Google Scholar 

  17. Ueda, A., Shi, W., Shimada, T., Miyake, H., and Takabe, T., Altered Expression of Barley Proline Transporter Causes Different Growth Responses in Arabidopsis, Planta, 2008, vol. 227, pp. 277–286.

    Article  PubMed  CAS  Google Scholar 

  18. Hare, P.D. and Cress, W.A., Metabolic Implications of Stress-Induced Proline Accumulation in Plants, Plant Growth Regul., 1997, vol. 21, pp. 79–102.

    Article  CAS  Google Scholar 

  19. Peng, Z., Lu, Q., and Verma, D.P., Reciprocal Regulation of Delta-1-Pyrroline-5-Carboxylate Synthetase and Proline Dehydrogenase Genes Controls Proline Levels during and after Osmotic Stress in Plants, Mol. Gen. Genet., 1996, vol. 253, pp. 334–341.

    PubMed  CAS  Google Scholar 

  20. Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K., A Nuclear Gene Encoding Mitochondrial Proline Dehydrogenase, an Enzyme Involved in Proline Metabolism, Is Upregulated by Proline but Downregulated by Dehydration in Arabidopsis, Plant Cell, 1996, vol. 8, pp. 1323–1335.

    Article  PubMed  CAS  Google Scholar 

  21. Kochetov, A.V., Titov, S.E., Kolodyazhnaya, Ya.S., Komarova, M.L., Koval, V.S., Makarova, N.N., Ilinskii, Yu.Yu., Trifonova, E.A., and Shumny, V.K., Tobacco Transformants Bearing Antisense Suppressor of Proline Dehydrogenase Gene Are Characterized by Higher Proline Content and Cytoplasm Osmotic Pressure, Genetika, 2004, vol. 40, pp. 282–285.

    PubMed  CAS  Google Scholar 

  22. Kolodyazhnaya, Ya.S., Titov, S.E., Kochetov, A.V., Komarova, M.L., Romanova, A.V., Koval, V.S., and Shumny, V.K., Evaluation of Salt Tolerance in Nicotiana tabacum Plants Bearing an Antisense Suppressor of the Proline Dehydrogenase Gene, Genetika, 2006, vol. 42, pp. 278–281.

    Google Scholar 

  23. Kolodyazhnaya, Ya.S., Titov, S.E., Kochetov, A.V., Trifonova, E.A., Romanova, A.V., Komarova, M.L., Koval, V.S., and Shumny, V.K., Tobacco Transformants Expressing Antisense Sequence of Proline Dehydrogenase Gene Possess Tolerance to Heavy Metals, Genetika, 2007, vol. 43, pp. 994–998.

    Google Scholar 

  24. Gopal, J., Iwama, K., and Jitsuyama, Y., Effect of Water Stress Mediated through Agar In Vitro Growth of Potato, In Vitro Cell Dev. Biol. Plant, 2008, vol. 44, pp. 221–228.

    Article  Google Scholar 

  25. Titov, S.E., Generation of Genetically Modified Nicotiana tabacum L. Plants Expressing Antisense Suppressor of Proline Dehydrogenase Gene, Abst. Cand. Sci. (Biol.) Diss., Novosibirsk: Inst. Cytol. Genet., Sib. Otd. Russ. Acad. Sci., 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Ibragimova.

Additional information

Original Russian Text © S.S. Ibragimova, Ya.S. Kolodyazhnaya, S.V. Gerasimova, A.V. Kochetov, 2012, published in Fiziologiya Rastenii, 2012, Vol. 59, No. 1, pp. 99–107.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibragimova, S.S., Kolodyazhnaya, Y.S., Gerasimova, S.V. et al. Partial suppression of gene encoding proline dehydrogenase enhances plant tolerance to various abiotic stresses. Russ J Plant Physiol 59, 88–96 (2012). https://doi.org/10.1134/S1021443712010086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443712010086

Keywords

Navigation