Skip to main content
Log in

Activities of antioxidant enzymes in mitochondria of growing and dormant sugar beet roots

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In mitochondria isolated from growing (70–85 days) and dormant (stored for 8–12 weeks) sugar beet (Beta vulgaris L.) roots, activities of superoxide dismutase (SOD) and enzymes of the ascorbate-glutathione cycle were determined. The activity of SOD, the enzyme involved in superoxide detoxification, was much higher in mitochondria of the growing root, whereas activities of ascorbate peroxidase (APO) and glutathione reductase (GR), key enzymes of the ascorbate-glutathione cycle involved in the hydrogen peroxide degradation, increased substantially in mitochondria of dormant storage roots. Catalase (CAT) activity was detected in the fraction of root mitochondria purified in the sucrose density gradient, which activity was inhibited by cyanide by 85–90% and much weaker, by aminotriazol (by 30–35%). Submitochondrial localization of APO and CAT was analyzed using proteinase K. It was established that a substrate-binding APO center is localized on the external side of the inner membrane, whereas CAT is localized in the mitochondrial matrix. A possible role of mitochondria as ROS (hydrogen peroxide) acceptors in the cells of storage parenchyma of the stored root is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

ascorbic acid

AOX:

alternative

CN:

resistant oxidase

APO:

ascorbate peroxidase

AT:

aminotriazol

CAT:

catalase

ETC:

electron transport chain

GR:

glutathione reductase

MDHAR:

monodehydroascorbate reductase

PmitoKATP :

K+-channel sensitive to ATP

PUMP:

mitochondrial uncoupling protein

SDH:

succinate dehydrogenase

SOD:

superoxide dismutase

References

  1. Murphy, M.H., How Mitochondria Produce Reactive Oxygen Species, Biochem. J., 2009, vol. 417, pp. 1–13.

    Article  PubMed  CAS  Google Scholar 

  2. Moller, I.M., Plant Mitochondria and Oxidative Stress. Electron Transport, NADH Turnover and Metabolism of Reactive Oxygen Species, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, vol. 52, pp. 561–591.

    Article  PubMed  CAS  Google Scholar 

  3. Blokhina, O. and Fargestedt, K.V., Reactive Oxygen Species and Nitric Oxide in Plant Mitochondria: Origin and Redundant Regulatory Systems, Physiol. Plant., 2010, vol. 138, pp. 447–462.

    Article  PubMed  CAS  Google Scholar 

  4. Pastore, D., Trono, D., Laus, M.N., Fonzo, N.D., and Flagella, Z., Possible Plant Mitochondria Involvement in Cell Adaptation to Drought Stress, J. Exp. Bot., 2007, vol. 58, pp. 195–210.

    Article  PubMed  CAS  Google Scholar 

  5. Scandalios, J.G., Tong, W.-F., and Roupakis, D.G., Cat3, a Third Gene Locus Coding for a Tissue-Specific Catalase in Maize: Genetics, Intracellular Location, and Some Biochemical Properties, Mol. Cell Genet., 1980, vol. 179, pp. 33–41.

    CAS  Google Scholar 

  6. Prasad, T.K., Anderson, M.D., and Stewart, C.R., Localization and Characterization of Peroxidases in the Mitochondria of Chilling-Acclimated Maize Seedlings, Plant Physiol., 1995, vol. 108, pp. 1597–1605.

    PubMed  CAS  Google Scholar 

  7. Jimenez, A., Hernandez, J.A., Pastori, G., del Rio, L.A., and Sevilla, F., Ascorbate-Glutathione Cycle in Mitochondria and Peroxisomes in the Senescence of Pea Leaves, Plant Physiol., 1998, vol. 118, pp. 1327–1335.

    Article  PubMed  CAS  Google Scholar 

  8. Dietz, K.-J., Jacob, S., Oelze, M.-L., Laxa, M., Tognetti, V., Miranda, S.M.N., Baier, M., and Finkemeier, I., The Function of Peroxiredoxines in Plant Organelle Redox Metabolism, J. Exp. Bot., 2006, vol. 57, pp. 1697–1709.

    Article  PubMed  CAS  Google Scholar 

  9. Navrot, N., Rouhier, N., Gelhaye, E., and Jacquot, J.-P., Reactive Oxygen Species Generation and Antioxidant Systems in Plant Mitochondria, Physiol. Plant., 2007, vol. 129, pp. 185–195.

    Article  CAS  Google Scholar 

  10. Sweetlove, L.J., Heazlewood, J.L., Herald, V., Holtzapffel, R., Day, D.A., Leaver, C.J., and Millar, A.H., The Impact of Oxidative Stress on Arabidopsis Mitochondria, Plant J., 2001, vol. 32, pp. 891–904.

    Article  Google Scholar 

  11. Calegario, F.F., Cosso, R.G., Fagian, M.M., Almeida, F.V., Jardim, W.F., Jezek, P., Arruda, P., and Vercesi, A.E., Stimulation of Potato Tuber Respiration by Cold Stress Is Associated with Increased Capacity of Both Plant Uncoupling Mitochondrial Protein (PUMP) and Alternative Oxidase, J. Bioenerg. Biomembr., 2003, vol. 35, pp. 211–220.

    Article  PubMed  CAS  Google Scholar 

  12. Kuzniak, E. and Sklodowska, M., The Effect of Botrytis cinerea Infection on the Antioxidant Profile of Mitochondria from Tomato Leaves, J. Exp. Bot., 2004, vol. 397, pp. 605–612.

    Article  Google Scholar 

  13. Mittova, V., Guy, M., Tal, M., and Volokita, M., Salinity Up-Regulated the Antioxidative System in Root Mitochondria and Peroxisomes of the Wild Salt-Tolerant Tomato Species Lycopersicon penellii, J. Exp. Bot., 2004, vol. 55, pp. 1105–1113.

    Article  PubMed  CAS  Google Scholar 

  14. Shugaev, A.G. and Vyskrebentseva, E.I., Developmental Changes of Mitochondrial Functional Activity in Sugar Beet Taproot, Sov. Plant Physiol., 1985, vol. 32, pp. 259–267.

    CAS  Google Scholar 

  15. Shugaev, A.G. and Vyskrebentseva, E.I., Preparation of Intact Mitochondria from Sugar Beet Taproot, Sov. Plant Physiol., 1982, vol. 29, pp. 799–803.

    Google Scholar 

  16. Neuburger, M., Preparation of Plant Mitochondria, Criteria for Assessment of Mitochondrial Integrity and Purity, Survival In Vitro, Encyclopedia of Plant Physiology, vol. 18, Higher Plant Cell Respiration, Douce, R. and Day, D.A., Eds., Berlin: Springer-Verlag, 1985, pp. 7–24.

    Google Scholar 

  17. Crapo, J.D., McCord, J.M., and Fridovich, I., Preparation and Assay of Superoxide Dismutases, Methods Enzymol., 1978, vol. 53, pp. 382–393.

    Article  PubMed  CAS  Google Scholar 

  18. Hossain, M.A. and Asada, K., Inactivation Ascorbate Peroxidase in Spinach Chloroplasts on Dark Addition of Hydrogen Peroxide: Its Protection by Ascorbate, Plant Cell Physiol., 1984, vol. 25, pp. 1285–1295.

    CAS  Google Scholar 

  19. Arrigoni, O., Dipierro, S., and Borraccino, G., Ascorbate Free Radical Reductase: A Key Enzyme of the Ascorbic Acid System, FEBS Lett., 1981, vol. 125, pp. 242–244.

    Article  CAS  Google Scholar 

  20. Edvards, E.A., Rawsthone, S., and Mullineaux, P.M., Subcellular Distribution of Multiple Forms of Glutathione Reductase in Leaves of Pea, Planta, 1990, vol. 180, pp. 278–284.

    Google Scholar 

  21. Radi, R., Turrens, J.F., Chang, L.Y., Bush, K.M., Crapo, J.D., and Freeman, B.A., Detection of Catalase in Rat Heart Mitochondria, J. Biol. Chem., 1991, vol. 266, pp. 22028–22034.

    PubMed  CAS  Google Scholar 

  22. Salvi, M., Battaglia, V., Brunati, A.M., La Rocca, N., Tibaldi, E., Pietrangeli, P., Marcocci, L., Mondovi, B., Rossi, C.A., and Toninello, A., Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense, J. Biol. Chem., 2007, vol. 282, pp. 24 407–24 415.

    Article  CAS  Google Scholar 

  23. Tolbert, N.E. and Essner, E., Microbodies: Peroxisomes and Glyoxysomes, J. Cell Biol., 1981, vol. 91, pp. 271–283.

    Article  CAS  Google Scholar 

  24. Shugaev, A.G., Shugaeva, N.A., Lashtabega, D.A., and Vyskrebentseva, E.I., Effect of KCl-Medium on Succinate Oxidation and Hydrogen Peroxide Generation in Mitochondria of Sugar Beet Taproot, Russ. J. Plant Physiol., 2010, vol. 57, pp. 200–208.

    Article  Google Scholar 

  25. Mizuno, M., Kamei, M., and Tsuchida, H., Ascorbate Peroxidase and Catalase Cooperate for Protection against Hydrogen Peroxide Generated in Potato Tubers during Low-Temperature Storage, Biochem. Mol. Biol. Int., 1998, vol. 44, pp. 717–726.

    PubMed  CAS  Google Scholar 

  26. Amirsadeghi, S., Robson, C.A., and Vanlerberghe, G.C., The Role of the Mitochondrion in Plant Responses to Biotic Stress, Physiol. Plant., 2007, vol. 129, pp. 253–266.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Shugaev.

Additional information

Original Russian Text © A.G. Shugaev, D.A. Lashtabega, N.A. Shugaeva, E.I. Vyskrebentseva, 2011, published in Fiziologiya Rastenii, 2011, Vol. 58, No. 3, pp. 323–329.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shugaev, A.G., Lashtabega, D.A., Shugaeva, N.A. et al. Activities of antioxidant enzymes in mitochondria of growing and dormant sugar beet roots. Russ J Plant Physiol 58, 387–393 (2011). https://doi.org/10.1134/S1021443711020208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443711020208

Keywords

Navigation