Skip to main content

Advertisement

Log in

Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The tobacco β-1,3-glucanase gene (GLU), alfalfa defensin gene alfAFP, and their bivalent gene GLU-AFP were introduced into tomato cv. Micro-Tom via Agrobacterium-mediated method. Transformants were obtained and confirmed by GUS histochemical staining, PCR, and Southern blotting. Northern blotting analysis with GLU and APF probes revealed a variation in the expression among these transformants at transcription level. One to three copies of the transgene were, respectively, integrated into the tomato nuclear genome. Performance test of resistance to Ralstonia solanacearum with T1 generation transgenic tomato lines showed that the transgenic lines exhibited higher resistance to the infected pathogens than nontransgenic plants, and the resistance levels were related to expression levels of the transgene, showing a dose effect. The transgenic tomato harboring GLU — AFP cassette showed the highest disease resistance, which suggested that the alfAFP and glucanase genes have synergistical effects on the resistance to R. solanacearum. Some independent lines with high disease resistance, low variability, and stable expression of transgenes could be selected for further studies and molecular breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFP:

gene encoding antifungal peptide defensin

AS:

acetosyringone

CaMV35S:

cauliflower mosaic virus 35S promoter

Cef:

cefotaxime

GLU:

gene encoding β-1,3-glucanase

GUS:

β-glucuronidase

Km:

kanamycin

PCR:

polymerase chain reaction

Pnos :

nopaline synthase gene promoter

Tnos :

nopaline synthase terminator

ZT:

zeatin

References

  1. Hayward, A.C., Biology and Epidemiology of Bacterial Wilt Caused by Pseudomonas solanacearum, Annu. Rev. Phytopathol., 1991, vol. 29, pp. 65–87.

    Article  Google Scholar 

  2. Hoda, H.E.H., Mohamed, E.O., and Noha, M.S., Biological Control of Bacterial Spot of Tomato Caused by Xanthomonas campestris pv. vesicatoria by Rahnella aquatilis, Microsc. Res., 2005, vol. 21, pp. 4–10.

    Google Scholar 

  3. Deslandes, L., Olivier, J., Peeters, N., Feng, D.X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S., and Marco, Y., Physical Interaction between RRS1-R, a Protein Conferring Resistance to Bacterial Wilt, and PopP2, a Type III Effector Targeted to the Plant Nucleus, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 8024–8029.

    Article  PubMed  CAS  Google Scholar 

  4. Tian, C.E., Wang, Z.X., and Chen, T., Transfer of Antibacterial Peptide D Gene into Tomato and Identification of Transgenic Plants, Hereditas, 2000, vol. 22, pp. 86–89.

    CAS  Google Scholar 

  5. Sarowar, S., Kim, Y.J., Kim, E.N., Kim, K.D., Hwang, B.K., Islam, R., and Shin, J.S., Overexpression of a Pepper Basic Pathogenesis-Related Protein 1 Gene in Tobacco Plants Enhances Resistance to Heavy Metal and Pathogen Stresses, Plant Cell Rep., 2005, vol. 4, pp. 216–224.

    Article  Google Scholar 

  6. Yanqing, W., Qian, Y., and Yukio, T., Nitric Oxide-Over-producing Transformants of Pseudomonas fluorescens with Enhanced Biocontrol of Tomato Bacterial Wilt, J. Gen. Plant Pathol., 2005, vol. 71, pp. 33–38.

    Article  Google Scholar 

  7. Sujon, S., Eui, N.K., and Young, J.K., Overexpression of a Pepper Ascorbate Peroxidase-Like 1 Gene in Tobacco Plants Enhances Tolerance to Oxidative Stress and Pathogens, Plant Sci., 2005, vol. 169, pp. 55–63.

    Article  Google Scholar 

  8. Krish, K.K., Kandasami, P., and Rangaraj, N., A High Throughput Functional Expression Assay System for a Defense Gene Conferring Transgenic Resistance on Rice against the Sheath Blight Pathogen, Rhizoctonia solani, Plant Sci., 2003, vol. 165, pp. 969–976.

    Google Scholar 

  9. Zhang, X.-H., Guo, D.-J., and Zhang, L.-M., The Research on the Expression of Rabbit Defensin (NP-1) Gene in Transgenic Tomato, Acta Gen. Sinica, 2000, vol. 27, pp. 953–958.

    CAS  Google Scholar 

  10. Gao, A.G., Hakimi, S.M., Mittanck, C.A., Wu, Y., Woerner, B.M., Stark, D.M., Shah, D.M., Liang, J., and Rommens, C.M., Fungal Pathogen Protection in Potato by Expression of a Plant Defensin Peptide, Nat. Biotechnol., 2000, vol. 18, pp. 1307–1310.

    Article  PubMed  CAS  Google Scholar 

  11. Quyang, B., Li, H.-Y., and Ye, Z.-B., Increased Resistance to Fusarium Wilt in Transgenic Tomato Expressing Bivalent Hydrolytic Enzymes, J. Plant Physiol. Mol. Biol., 2003, vol. 29, pp. 179–184.

    Google Scholar 

  12. Yuexia, W., Albert, P.K., and Joel, M.C., Co-Transfer and Expression of Chitinase, Glucanase and Bar Genes in Creeping Bent Grass for Conferring Fungal Disease Resistance, Plant Sci., 2003, vol. 165, pp. 497–506.

    Article  Google Scholar 

  13. Mao, B.-Z., Li, D.-B., Li, Q., and He, Z.-H., Transgenic Rice with Double Defense Genes Exhibiting Resistance to Sheath Blight (Rhizoctonia solani Kuhn.), J. Plant Physiol. Mol. Biol., 2003, vol. 29, pp. 322–326.

    Google Scholar 

  14. Hideki, T., Ayano, S., Tsutomu, A., Syofi, R., Sumire, F., Mari, K., and Yasufumi, H., Catalog of Micro-Tom Tomato Responses to Common Fungal, Bacterial, and Viral Pathogens, J. Gen. Plant Pathol., 2005, vol. 71, pp. 8–22.

    Article  Google Scholar 

  15. Naoki, Y., Taneaki, T., and Manabu, W., Expressed Sequence Tags from the Laboratory-Grown Miniature Tomato (Lycopersicon esculentum) Cultivar Microtom and Mining for Single Nucleotide Polymorphisms and Insertions/Deletions in Tomato Cultivars, Gene, 2005, vol. 4, pp. 1–8.

    Google Scholar 

  16. Tzfira, T., Jensen, C.S., Wang, W.X., Zuker, A., Vinocur, B., Altman, A., and Vainstein, A., Transgenic Populus tremul: A Step-by-Step Protocol for Its Agrobacterium Meditated Transformation, Plant Mol. Biol. Rep., 1997, vol. 15, pp. 219–235.

    Article  CAS  Google Scholar 

  17. Chomczynski, N. and Sacchi, N., Single Step Method of RNA Isolation by Acid Guanidinium Thiocyanate Phenol-Chloroform Extraction, Anal. Biochem., 1987, vol. 161, pp. 156–159.

    Article  Google Scholar 

  18. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Springer Harbor: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  19. Deslandes, L., Pileur, F., Liaubet, L., Camut, S., Can, C., Williams, K., Holub, E., Beynon, J., Arlat, M.L., and Marcol, Y., Genetic Characterization of RRS1, a Recessive Locus in Arabidopsis thaliana That Confers Resistance to the Bacterial Soilborne Pathogen Ralstonia solanacearum, Mol. Plant-Microbe Interact., 1998, vol. 11, pp. 659–667.

    PubMed  CAS  Google Scholar 

  20. Nariyoshi, K., Hitoshi, K., and Takayuki, A.B.E., Control of Tomato Bacterial Wilt without Disinfections Using a New Functional Polymer That Captures Microbial Cells Alive on the Surface and Is Highly Biodegradable, BioSci. Biotechnol. Biochem., 2005, vol. 69, pp. 326–333.

    Article  Google Scholar 

  21. Gelvin, S.B., Agrobacterium-Mediated Plant Transformation: The Biology behind the “Gene-Jocking” Tool, Microbiol. Mol. Biol. Rev., 2003, vol. 67, pp. 16–37.

    Article  PubMed  CAS  Google Scholar 

  22. Wen, Y.C., and Tim, M.I., Molecular Mechanism for Silencing Virally Transduced Genes Involves Histone Deacetylation and Chromatin Condensation, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 377–382.

    Article  Google Scholar 

  23. Covey, S.N. and Al-Kaff, N.S., Plant DNA Viruses and Gene Silencing, Plant Mol. Biol., 2000, vol. 43, pp. 307–322.

    Article  PubMed  CAS  Google Scholar 

  24. Sang, M.P., Jung, S., and Sung, J., Transgenic Watermelon Rootstock Resistant to CGMMV (Cucumber Green Mottle Mosaic Virus) Infection, Plant Cell Rep., 2005, vol. 24, pp. 350–356.

    Article  Google Scholar 

  25. Allen, G., Spiker, S., and Thompson, W., Use of Matrix Attachment Regions (MARs) to Minimize Transgene Silencing, Plant Mol. Biol., 2000, vol. 43, pp. 241–256.

    Article  Google Scholar 

  26. Fagard, M. and Vaucheret, H., Systemic Silencing Signal, Plant Mol. Biol., 2000, vol. 43, pp. 285–293.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 5, pp. 756–763.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S.C., Liu, A.R. & Zou, Z.R. Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum . Russ J Plant Physiol 53, 671–677 (2006). https://doi.org/10.1134/S1021443706050116

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443706050116

Key words