Skip to main content
Log in

Lessons of the development of the orbital theory of paleoclimate

  • Review
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

The background of the orbital theory of paleoclimate, the creation of which is not yet completed, is reviewed in the article below. Can this theory lay the foundation for the development of correct paleoclimatic models that would provide for an adequate idea about the operation of our planet’s climatic machine? The authors attempt to answer this question and outline the trend of its further improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Schwarzbach, Climates of the Past: An Introduction to Paleoclimatology (D. Van Nostrand, Princeton, 1963; Inostrannaya Literatura, Moscow, 1955).

    Google Scholar 

  2. J. Croll, Climate and Time in Their Geological Relations: A Theory of Secular Changes of the Earth’s Climate (Edward Stanford, London, 1875).

    Google Scholar 

  3. J. Imbrie and K. P. Imbrie, Ice Ages: Solving the Mystery (Short Hills, Enslow, 1979; Progress, Moscow, 1988).

    Google Scholar 

  4. J. A. Adhémar, Revolutions de la mer: deluges periodiques (Carilian-Goeury et V. Dalmont, Paris, 1842).

    Google Scholar 

  5. V. A. Bol’shakov, The New Concept of the Orbital Theory of Paleoclimate (Mosk. Gos. Univ., Moscow, 2003) [in Russian].

    Google Scholar 

  6. J. Croll, “On the Physical Cause of the Change of Climate during Geological Epochs,” Philos. Mag. 28, 121 (1864).

    Google Scholar 

  7. J. Croll, “On the Change in the Obliquity of the Ecliptic, Its Influence on the Climate of the Polar Regions and on the Level of the Sea,” Philos. Mag. 33, 426 (1867).

    Google Scholar 

  8. J. Imbrie, “Astronomical Theory of the Pleistocene Ice Ages: a Brief Historical Review,” Icarus 50, 408 (1982).

    Article  Google Scholar 

  9. M. Milankovic, Mathematic Climatology and Astronomic Theory of Climatic Fluctuations, (Borntreger, Berlin, 1930; GONTI, Moscow, 1939).

    Google Scholar 

  10. J. D. Hays, J. Imbrie, and N. Shackleton, “Variation in the Earth’s Orbit: Pacemaker of the Ice Ages,” Science 194, 1121 (1976).

    Article  Google Scholar 

  11. J. Imbrie, A. Berger, A. Boyle, et al., “On the Structure and Origin of Major Glaciation Cycles. 2. The 100 000-Year Cycle,” Paleoceanography 8, 699 (1993).

    Article  Google Scholar 

  12. V. A. Bol’shakov and P. V. Bol’shakov, “Astronomical Theory of Paleoclimate: A New Concept, Stratigr. Geol. Korrelyatsiya 7(6), 3 (1999) [Stratigr. Geol. Correlation 7 (6), 521 (1999)].

    Google Scholar 

  13. V. A. Bol’shakov, “A New Concept of the Astronomical Theory of Paleoclimate: Two Steps Backward, One Step Forward,” Fiz. Zemli 37(11), 50 (2001) [Izv. Phys. Solid Earth 37 (11), 906 (2001)].

    Google Scholar 

  14. M. Elkibbi and J. Rial, “An Outsider’s Review of the Astronomical Theory of the Climate: Is the Eccentricity-Driven Insolation the Main Driver of the Ice Ages?,” Earth-Sci. Rev. 56, 161 (2001).

    Article  Google Scholar 

  15. D. Paillard, “Glacial Cycles: Toward a New Paradigm,” Revs. Geophys. 39, 325 (2001).

    Article  Google Scholar 

  16. M. E. Raymo and K. Nisancioglu, “The 41-Kyr World: Milankovitch’s Other Unsolved Mystery,” Paleoceanography 18, 1011 (2003).

    Article  Google Scholar 

  17. L. E. Lisiecki and M. E. Raymo, “A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records,” Paleoceanography 20, 1003 (2005).

    Google Scholar 

  18. W. F. Ruddiman and A. McIntyre, “Oceanic Mechanisms for Amplification of the 23 000-Year Ice-Volume Cycle,” Science 212, 617 (1981).

    Article  Google Scholar 

  19. E. S. Kandiano and H. A. Bauch, “Surface Ocean Temperatures in the Northeast Atlantic during the Last 500 000 Years: Evidence from Foraminiferal Census Data,” Terra Nova 15(4), 265 (2003).

    Article  Google Scholar 

  20. A. L. Berger and M. F. Loutre, “Insolation Values for the Climate of the Last 10 Million Years,” Quat. Sci. Rev. 10, 297 (1991).

    Article  Google Scholar 

  21. G. Roe, “In Defence of Milankovitch,” Geophys. Res. Lett. 33, L24703 (2006).

    Article  Google Scholar 

  22. V. A. Bol’shakov, “Modern Climatic Data for the Pleistocene: Implications for a New Concept of the Orbital Theory of Paleoclimate,” Russ. J. Earth Sci. 5(2), 125 (2003).

    Article  Google Scholar 

  23. Milankovitch and Climate: Understanding the Response to Astronomical Forcing, NATO ASI Series, Ed. by A. Berger et al. (Reidel, Dordrecht, 1984), Ser. C, Vol. 126.

    Google Scholar 

  24. S. Clemens and R. Tiedemann, “Eccentricity Forcing of Pliocene-Early Pleistocene Climate Revealed in a Marine Oxygen-Isotope Record,” Nature 385, 801 (1997).

    Article  Google Scholar 

  25. V. A. Bol’shakov, “The Problem of the 11th Marine Isotope Stage from the Viewpoint of the New Conception of the Orbital Theory of the Paleoclimate,” Okeanologiya 50(2), 236 (2010) [Oceanology 50 (2), 215 (2010)].

    Google Scholar 

  26. M. Crucifix, M. Loutre, and A. Berger, “The Climate Response to the Astronomical Forcing,” Space Sci. Rev. 125, 213 (2006).

    Article  Google Scholar 

  27. V. A. Bol’shakov, “A New Concept of the Astronomical Theory of Paleoclimate,” in Problems of the Pleistocene’s Paleogeography and Stratigraphy (Mosk. Gos. Univ., Moscow, 2000), pp. 35–69 [in Russian].

    Google Scholar 

  28. M. F. Loutre, D. Paillard, F. Vimeix, and E. Cortijo, “Does Mean Annual Insolation Have the Potential to Change the Climate?,” Earth Planet. Sci. Lett. 221, 1 (2004).

    Article  Google Scholar 

  29. V. A. Bol’shakov, “How Long Will the ‘Precession Epoch’ Last in Terms of Pleistocene Glacial Cycles?,” Russ. J. Earth Sci. 10(3) (2008).

  30. M. Loutre and A. Berger, “No Glacial-Interglacial Cycle in the Ice Volume Simulated Under a Constant Astronomical Forcing and Variable CO2,” Geophys. Rev. Lett. 27(6), 783 (2000).

    Article  Google Scholar 

  31. J. Petit, J. Jouzel, D. Raynaud, et al., “Climate and Atmospheric History of the Past 420 000 Years from the Vostok Ice Core, Antarctica,” Nature 399, 429 (1999).

    Article  Google Scholar 

  32. D. Paillard, “Climate and the Orbital Parameters of the Earth,” Geoscience 342, 273 (2010).

    Article  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.A. Bol’shakov, A.P. Kapitsa, 2011, published in Vestnik Rossiiskoi Akademii Nauk, 2011, Vol. 81, No. 7, pp. 603–612.

Vyacheslav Aleksandrovich Bol’shakov, Dr. Sci. (Phys.-Math.), is a leading researcher at the Laboratory of Modern-Period Deposits and the Pleistocene Paleogeography at the Faculty of Geography, Moscow State University. RAS Corresponding Member Andrei Petrovich Kapitsa is head of the Department of Rational Nature Management at the same faculty of Moscow State University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bol’shakov, V.A., Kapitsa, A.P. Lessons of the development of the orbital theory of paleoclimate. Her. Russ. Acad. Sci. 81, 387–396 (2011). https://doi.org/10.1134/S1019331611030014

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331611030014

Keywords

Navigation