Skip to main content
Log in

Aggregation in Biocompatible Linear Block Copolymers: Computer Simulation Study

  • Theory and Simulation
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The self-organization of molecules of linear diblock copolymer poly(ethylene oxide)–polylactide and triblock copolymer polylactide–poly(ethylene oxide)–polylactide in aqueous solution is studied by the dissipative particle dynamics method, and quantitative comparison with the experimental data is performed. It is shown that the diblock copolymers are aggregated to spherical micelles, their average aggregation number increases with increasing both polymer concentration and hydrophobic block length. For the given type of molecules, the simulation results agree well with the experiment. For the case of triblock copolymers it is predicted that stable supramolecular aggregates of various morphologies exist in solution even at low concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Karayianni and S. Pispas, in Fluorescence Studies of Polymer Containing Systems. Springer Series on Fluorescence (Methods and Applications), Ed. by M. Karayianni, S. Pispas, and K. Prochazka (Springer, Cham, 2016).

  2. D. E. Discher, V. Ortiz, G. Srinivas, M. L. Klein, Y. Kim, D. Christian, S. Cai, P. Photos, and F. Ahmed, Prog. Polym. Sci. 32, 838 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, Science 263, 1600 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. S. A. Hagan, A. G. A. Coombes, M. C. Garnett, S. E. Dunn, M. C. Davies, L. Illum, S. S. Davis, S. E. Harding, S. Purkiss, and P. R. Gellert, Langmuir 12, 2153 (1996).

    Article  CAS  Google Scholar 

  5. K. Yasugi, Y. Nagasaki, M. Kato, and K. Kataoka, J. Controlled Release 62, 89 (1999).

    Article  CAS  Google Scholar 

  6. T. Riley, S. Stolnik, C. R. Heald, C. D. Xiong, M. C. Garnett, L. Illum, and S. S. Davis, Langmuir 17, 3168 (2001).

    Article  CAS  Google Scholar 

  7. T. Riley, C. R. Heald, S. Stolnik, M. C. Garnett, L. Illum, and S. S. Davis, Langmuir 19, 8428 (2003).

    Article  CAS  Google Scholar 

  8. F. Ahmed and D. E. Discher, J. Controlled Release 96, 37 (2004).

    Article  CAS  Google Scholar 

  9. Y. Kim, P. Dalhaimer, D. A. Christian, and D. E. Discher, Nanotecnology 16, 484 (2005).

    Article  CAS  Google Scholar 

  10. Zh. Zhu, Biomaterials 34, 10238 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. T. Fujiwara, M. Miyamoto, Y. Kimura, T. Iwata, and Y. Doi, Macromolecules 34, 4043 (2001).

    Article  CAS  Google Scholar 

  12. N. Sanabria-Delong, S. K. Agrawal, S. R. Bhatia, and G. N. Tew, Macromolecules 40, 7864 (2007).

    Article  CAS  Google Scholar 

  13. S. K. Agrawal, N. Sanabria-Delong, P. R. Jemian, G.N. Tew, and S. R. Bhatia, Langmuir 23, 5039 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. N. Sanabria-Delong, A. J. Crosby, and G. N. Tew, Biomacromolecules 9, 2784 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. Nagahama, K. Fujiura, S. Enami, T. Ouchi, and Y. Ohya, J. Polym. Sci., Part A: Polym. Chem. 46, 6317 (2008).

    Article  CAS  Google Scholar 

  16. P. Jie, S. S. Venkatraman, F. Min, B. Y. C. Freddy, and G. L. Huat, J. Controlled Release 110, 20 (2005).

    Article  CAS  Google Scholar 

  17. I. Orienti, G. Zuccari, M. Falconi, G. Teti, N. A. Illingworth, and G. J. Veal, Nanomedicine (N. Y., NY, U. S.) 8, 880 (2012).

    CAS  Google Scholar 

  18. S. Pispas, N. Hadjichristidis, I. Potemkin, and A. Khokhlov, Macromolecules 33, 1741 (2000).

    Article  CAS  Google Scholar 

  19. R. A. Gumerov, A. A. Rudov, W. Richtering, M. Möller, and I. I. Potemkin, ACS Appl. Mater. Interfaces 9, 31302 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. K. E. Polovnikov and I. I. Potemkin, J. Phys. Chem. B 121, 10180 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. X. D. Guo, J. P. K. Tan, S. H. Ki, Li. J. Zhang, Y. Zhang, J. L. Hedrick, Y. Y. Yang, and Y. Qian, Biomaterials 30, 6556 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. P. Posocco, M. Fermeglia, and S. Pricl, J. Mater. Chem. 20, 7742 (2010).

    Article  CAS  Google Scholar 

  23. Y.-L. Lin, M.-Z. Wu, Y.-J. Sheng, and H.-K. Tsao, J. Chem. Phys. 136, 104905 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19, 155 (1992).

    Article  Google Scholar 

  25. P. Espanol and P. Warren, Europhys. Lett. 30, 191 (1995).

    Article  CAS  Google Scholar 

  26. R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).

    Article  CAS  Google Scholar 

  27. Zh. Li and E. E. Dormidontova, Macromolecules 43, 3521 (2010).

    Article  CAS  Google Scholar 

  28. A. A. Rudov, E. S. Patyukova, I. V. Neratova, P. G. Khalatur, D. Posselt, C. M. Papadakis, and I. I. Potemkin, Macromolecules 46, 5786 (2013).

    Article  CAS  Google Scholar 

  29. A. Stenbock-Fermor, A. A. Rudov, R. A. Gumerov, L. A. Tsarkova, A. Böker, M. Möller, and I. I. Potemkin, ACS Macro Lett. 3, 803 (2014).

    Article  CAS  Google Scholar 

  30. Y. Wang, Q. Y. Li, X. B. Liu, C. Y. Zhang, Zh. M. Wu, and X. D. Guo, ACS Appl. Mater. Interfaces 7, 25592 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. A. A. Rudov, P. G. Khalatur, and I. I. Potemkin, Macromolecules 45, 4870 (2012).

    Article  CAS  Google Scholar 

  32. F. Müller-Plathe, ChemPhysChem 3, 754 (2002).

    Article  Google Scholar 

  33. V. S. Kravchenko and I. I. Potemkin, J. Phys. Chem. B 120, 122211 (2016).

    Article  CAS  Google Scholar 

  34. V. V. Palyulin and I. I. Potemkin, Macromolecules 41, 4459 (2008).

    Article  CAS  Google Scholar 

  35. T. M. Birshtein and E. B. Zhulina, Polymer 30, 170 (1989).

    Article  CAS  Google Scholar 

  36. S. V. Venev, P. Reineker, and I. I. Potemkin, Macromolecules 43, 10735 (2010).

    Article  CAS  Google Scholar 

  37. A. Markina, V. Ivanov, P. Komarov, A. Khokhlov, and S.-H. Tung, Chem. Phys. Lett. 664, 16 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Dolgov.

Additional information

Original Russian Text © D.S. Dolgov, T.E. Grigor’ev, A.I. Kulebyakina, E.V. Razuvaeva, R.A. Gumerov, S.N. Chvalun, I.I. Potemkin, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2018, Vol. 60, No. 6, pp. 522–530.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgov, D.S., Grigor’ev, T.E., Kulebyakina, A.I. et al. Aggregation in Biocompatible Linear Block Copolymers: Computer Simulation Study. Polym. Sci. Ser. A 60, 902–910 (2018). https://doi.org/10.1134/S0965545X19010036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19010036

Navigation