Skip to main content
Log in

Enhanced dielectric properties of polyethylene glycol (PEG) modified BaTiO3 (BT)-poly(vinylidene fluoride) (PVDF) composites

  • Composites
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

To improve the compatibility between the ceramic particle and polymer matrix, the surface modifier polyethylene glycol (PEG) was used for the modification of BaTiO3 (BT) particles as fillers in the poly(vinylidene fluoride) (PVDF) matrix via solution casting techniques. The structural analysis of the composite characterized by X-ray diffraction confirms the tetragonal structure. The results showed that the PEG modified BT-PVDF composites had a higher dielectric constant (≈192) and relatively lower dielectric loss value at 1000 Hz. The Nyquist plot suggests the contribution of only bulk effect present in the composites. The AC electrical conductivity studies obey Jonscher’s universal power law by fitting AC conductivity data which reveals the potential utility of the composites for ideal capacitor and microscopic reasons for this improvement were presented. Furthermore, the remnant polarization was significantly improved and maximum polarization was observed for PEG modified BT-PVDF composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Chao, G. Liang, W. Kong, and X. Zhang, Mater. Chem. Phys. 108, 306 (2008).

    Article  CAS  Google Scholar 

  2. X. Zhang, M. Yuhong, Z. Changwen, and Y. Wantai, Appl. Surf. Sci. 305, 531(2014).

    Article  CAS  Google Scholar 

  3. X. F. Liu, C. X. Xiong, H. J. Sun, L. J. Dong, R. Li, and Y. Liu, Mater. Sci. Eng., B 127, 261 (2006).

    Article  CAS  Google Scholar 

  4. K. C. Cheng, C. M. Lin, S. F. Wang, S. T. Lin, and C. F. Yang, Mater. Lett. 61, 757 (2007).

    Article  CAS  Google Scholar 

  5. S. J. Chang, W. S. Liao, C. J. Ciou, J. T. Lee, and C. C. Li, J. Colloid Interface Sci. 329, 300 (2009).

    Article  CAS  Google Scholar 

  6. “Ferroelectric Film Devices,” in Handbook of Thin Film Devices, Ed. by D. J. Taylor (Academic Press, San Diego, 2000), Vol. 5.

  7. Z. D. Liu, Y. Feng, and W. L. Li, RSC Adv. 5, 29017 (2015).

    Article  CAS  Google Scholar 

  8. Z. M. Dang, Y. F. Yu, H. P. Xu, and J. Bai, Compos. Sci. Technol. 68, 171 (2008).

    Article  CAS  Google Scholar 

  9. Z. M. Dang, J. K. Yuan, J. W. Zha, T. Zhou, S. T. Li, and G. H. Hu, Prog. Mater. Sci. 57, 660 (2012).

    Article  CAS  Google Scholar 

  10. L. Ramajo, M. S. Castro, and M. M. Reboredo, Composites, Part A 38, 1852 (2007).

    Article  Google Scholar 

  11. N. Joseph, S. K. Singh, R. K. Sirugudu, V. R. K. Murthy, S. Ananthakumar, and M. T. Sebastian, Mater. Res. Bull. 48, 1681 (2013).

    Article  CAS  Google Scholar 

  12. F. Chao, G. Liang, W. Kong, Z. Zhang, and J. Wang, Polym. Bull. 60, 129 (2008).

    Article  CAS  Google Scholar 

  13. S. H. Choi, I. D. Kim, J. M. Hong, K. H. Park, and S. G. Oh, Mater. Lett. 61, 2478 (2007).

    Article  CAS  Google Scholar 

  14. J. Zhu, W. Li, X. Huo, and Y. Zhu, J. Phys. D: Appl. Phys. 48, 355301 (2015)

    Article  Google Scholar 

  15. T. Gillich, C. Acikgoz, L. Isa, A. D. Schluter, N. D. Spencer, and M. Textor, ACS Nano 7, 316 (2013).

    Article  CAS  Google Scholar 

  16. E. Wu, J. Appl. Crystallogr. 22, 506 (1989).

    Article  CAS  Google Scholar 

  17. P. K. Mahato and S. Sen, J. Mater. Sci.: Mater. Electron 26, 2969 (2015).

    CAS  Google Scholar 

  18. K. Shameli, M. B. Ahmad, S. D. Jazayeri, S. Sedaghat, P. Shabanzadeh, H. Jahangirian, M. Mahdavi, and Y. Abdollahi, Int. J. Mol. Sci. 13, 6639 (2012).

    Article  CAS  Google Scholar 

  19. I. A. Asimakopoulos, G. C. Psarras, and L. Zoumpoulakis, eXPRESS Polym. Lett. 8, 692 (2014).

    Article  CAS  Google Scholar 

  20. C. V. Chanmal and J. P. Jog, eXPRESS Polym. Lett. 2, 294 (2008).

    Article  CAS  Google Scholar 

  21. W. Wu, X. Huang, S. Li, P. Jiang, and T. Toshikatsu, J. Phys. Chem. C 116, 24887 (2012).

    Article  CAS  Google Scholar 

  22. K. Yu, H. Wang, Y. Zhou, Y. Bai, and Y. Niu, J. Appl. Phys. 113, 034105 (2013).

    Article  Google Scholar 

  23. J. R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987).

    Google Scholar 

  24. P. Khatri, B. Behera, and R. N. P. Choudhary, J. Phys. Chem. Solids 70, 385 (2009).

    Article  CAS  Google Scholar 

  25. P. Khatri, B. Behera, and R. N. P. Choudhary, Phys. Status Solidi B 246, 1118 (2009).

    Article  CAS  Google Scholar 

  26. A. Karmakar and A. Ghosh, J. Appl. Phys. 110, 034101 (2011).

    Article  Google Scholar 

  27. A. K. Jonscher, Nature 267, 673 (1977).

    Article  CAS  Google Scholar 

  28. N. Panda, S. Pattanayak, and R. N. P. Choudhary, J.Mater. Sci.: Mater. Electron 26, 4069 (2015).

    CAS  Google Scholar 

  29. T. Vijay Kumar, A. S. Chary, S. Bhardwaj, A. M. Awasthi, and S. N. Reddy, Int. J. Mater. Sci. Appl. 2, 173 (2013).

    Google Scholar 

  30. N. Panda, B. N. Parida, R. Padhee, and R. N. P. Choudhary, J. Mater. Sci.: Mater. Electron. 26, 3797 (2015).

    CAS  Google Scholar 

  31. B. Haworth, C. L. Raymond, and I. Sutherland, Polym. Eng. Sci. 41, 1345 (2001).

    Article  CAS  Google Scholar 

  32. M. Tannriu, R. D. K. Mishra, K. Berbrand, and D. Murphy, Mater. Sci. Eng. A 40, 208 (2005).

    Article  Google Scholar 

  33. O. P. Bajpai, J. B. Kamdi, M. Selvakumar, S. Ram, D. Khastgir, and S. Chattopadhyay, eXPRESS Polym. Lett. 8, 669 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Mahaling.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharana, S., Mishra, M.K., Behera, B. et al. Enhanced dielectric properties of polyethylene glycol (PEG) modified BaTiO3 (BT)-poly(vinylidene fluoride) (PVDF) composites. Polym. Sci. Ser. A 59, 405–415 (2017). https://doi.org/10.1134/S0965545X17030130

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17030130

Navigation