Skip to main content
Log in

Influence of the structure and morphology of ultrathin poly(3-hydroxybutyrate) fibers on the diffusion kinetics and transport of drugs

  • Medical Polymers
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Ultrathin fibers of a biodegradable polymer poly(3-hydroxybutyrate) with an encapsulated drug (dipyridamole, 0–5% of poly(3-hydroxybutyrate) mass) are obtained by electrospinning. Introduction of the drug substantially affects the geometric shape and crystallinity of individual filaments as well as the total porosity of the fibrillar film on their basis. As follows from the SEM data, in the absence of the drug or at its low concentration (<3%), poly(3-hydroxybutyrate) fibers appear as ellipse-like fragments alternating with cylindrical ones. At a higher content of the drug (3–5%), the abnormal ellipse-like structures are practically absent and the fiber acquires the cylindrical shape. A set of morphological and crystallinity characteristics of the fibers determines the absorption of water and the rate of the diffusion transport of the drug as well as the corresponding profiles of its controlled release. A simplified model of drug desorption from the fibrillar film is advanced which considers two sequential stages of the process: (i) diffusion of the drug in the polymer fiber with coefficient D f ~ 10–12 cm2/s and dimeter φf ~ 2–4 μm and (ii) transport of the drug in the interfibrillar porous space filled by solvent with diffusion coefficient D w = 5.5 × 10–6 cm2/s. Using the characteristics of porosity, crystallinity, and geometry of the fibers and diffusion effective coefficients D eff calculated from the profile of drug release, it is shown that the limiting stage of the transport of the drug is its diffusion in the volume of the cylindrical fiber. The model makes it possible to turn from the experimental values of D eff to partial diffusion coefficients D f and to calculate the kinetic profile of drug release with allowance made for the above-listed factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fundamentals and Applications of Controlled Release Drug Delivery, Ed. by J. Siepmann, R. A. Siegel, and M. J. Rathbone (Springer, London; New York; Dodrecht; Heidelberg, 2012).

  2. A. Ferreira, M. Grassi, E. Gudiňo, and P. De Olivera, J. Appl. Math. Sci. 74 (3), 620 (2014).

    Article  Google Scholar 

  3. J. R. Weiser and W. M. Saltzman, J. Controlled Release 190, 664 (2014).

    Article  CAS  Google Scholar 

  4. D. J. McClements, Adv. Colloid Interface Sci. 219 (1), 27 (2015).

    Article  CAS  Google Scholar 

  5. M. K. Nguyen and E. Alsberg, Prog. Polym. Sci. 39 (7), 1235 (2014).

    Article  CAS  Google Scholar 

  6. www.elsevier.com/locate/jconrel.

  7. Proceedings of 43d Annual Meeting and Exposition of the Controlled Release Society, Seattle, USA, 2016 (Seattle, 2016).

  8. A. Xiang and A. J. McHugh, J. Membr. Sci. 366 (2), 104 (2011).

    Article  CAS  Google Scholar 

  9. S. McGinty, S. McKee, and C. McCormick, Mathematic. Medic. Biol. 32, 163 (2015).

    Article  Google Scholar 

  10. J. Siepmann and F. Siepmann, Int. J. Pharm. 364, 328 (2008).

    Article  CAS  Google Scholar 

  11. R. A. Siegel, in Modeling of Drug Release from Porous Polymers, Ed. by M. Rosoff (VCH Publ, New York, 1989).

    Google Scholar 

  12. N. A. Plate and A. E. Vasil’ev, Physiologically Active Polymers (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  13. A. E. Chalih, V. K. Gerasimov, A. A. Scherbina, G. S. Kulagin, and R. R. Hasbiullin, Polym. Sci., Ser. A 50 (6), 977 (2008).

    Google Scholar 

  14. A. G. Ivonin, E. V. Pimenov, and V. A. Oborin, Izv. Komi Nauchn. Tsentra Ural. Otd. RAN, No. 1, 46 (2012).

    Google Scholar 

  15. E. I. Chazov, V. N. Smirnov, and V. P. Torchilin, Ross. Khim. Zh. 32 (5), 485 (1987).

    Google Scholar 

  16. N. D. Oltarzhevskaya, G. E. Krichevskii, N. V. Kuzina, and V. A. Gribkova, Tekst. Khim., No. 2, 37 (2003).

    Google Scholar 

  17. G. R. Karamutdinova, I. M. Gubaidullin, K. F. Koledina, and E. I. Kulish, in Proceedings of Conference “Actual Problems of Computational and Applied Mathematics”, Novosibirsk, Russia, 2015 (Akademgorodok, Novosibirsk, 2015), p. 19.

    Google Scholar 

  18. E. I. Kulish, A. S. Shurshina, and S. V. Kolesov, Vestn. Bashk. Univ. 19 (1), 34 (2014).

    Google Scholar 

  19. S. I. Zaidullin, R. A. Aznabaev, N. N. Sigaeva, R. R. Vil’danova, and F. F. Faizullina, in Proceedings of International Theoretical and Practical Conference on Ophthalmology “East-Westz”, Ufa, Russia, 2010 (Ufa, 2010), p. 176.

    Google Scholar 

  20. C. Zhang, X. Yuan, L. Wu, Y. Han, and J. Sheng, Eur. Polym. J. 41 (3), 423 (2005).

    Article  CAS  Google Scholar 

  21. A. Frenot and I. S. Chronakis, Colloid Interface Sci. 201 (1), 64 (2008).

    Google Scholar 

  22. A. N. Sonina, S. A. Uspenskii, G. A. Vikhoreva, Yu. N. Filatov, and L. S. Gal’braikh, Fibre Chem. 42, 350 (2011).

    Article  CAS  Google Scholar 

  23. E. V. Sytina, T. Kh. Tenchurin, S. G. Rudyak, V. P. Saprykin, O. A. Romanova, A. S. Orekhov, A. L. Vasil’ev, A. A. Alekseev, S. N. Chvalun, M. A. Pal’tsev, A. A. Panteleev, Mol. Med. (Moscow, Russ. Fed.), No. 6, 1728 (2014).

    Google Scholar 

  24. S. G. Karpova, A. A. Ol’khov, O. V. Staroverova, N. G. Shilkina, S. M. Lomakin, A. A. Popov, A. G. Filatov, E. L. Kucherenko, and A. L. Iordanskii, Polym. Sci., Ser. A (in press) (2016).

    Google Scholar 

  25. S. G. Karpova, A. A. Ol’khov, A. L. Iordanskii, S.M. Lomakin, N. G. Shilkina, A. A. Popov, K. Z. Gumargalieva, and A. A. Berlin, Polym. Sci., Ser. A 58 (1), 15 (2016).

    Article  Google Scholar 

  26. M. Thomas, A. Arora, and D. S. Katti, Mater. Sci. Eng., A 45, 320 (2014).

    Article  CAS  Google Scholar 

  27. M. Martinez-Sanz, M. Lopez-Rubio, M. Villano, C. S. S. Oliveira, M. Majone, M. Reis, and J. M. Lagarón, J. Appl. Polym. Sci. 133 (2), 42486 (2016).

    Article  Google Scholar 

  28. C. Zhang, X. Yuan, L. Wu, Y. Han, and J. Sheng, Eur. Polym. J. 41 (4), 423 (2005).

    Article  CAS  Google Scholar 

  29. Z. Ziaee and P. Supaphol, Polym. Test. 25, 807 (2006).

    Article  CAS  Google Scholar 

  30. S. C. Lee, J. I. Han, Y. G. Jeong, and M. Kwon, Macromolecules 43, 25 (2010).

    Article  CAS  Google Scholar 

  31. S. G. Karpova, A. L. Iordanskii, M. V. Motiakin, A. A. Ol’khov, O. V. Staroverova, S. M. Lomakin, N. G. Shilkina, S. Z. Rogovina, and A. A. Berlin, Polym. Sci., Ser. A 57 (2), 128 (2015).

    Article  Google Scholar 

  32. V. M. Correlo, L. F. Boesel, M. Bhattacharya, J. F. Mano, N. M. Neves, and R. L. Reis, Mater. Sci. Eng., A 403, 57 (2005).

    Article  Google Scholar 

  33. A. L. Iordanskii, P. P. Kamaev, A. A. Olkhov, and A. M. Wasserman, Desalination 126, 139 (1999).

    Article  CAS  Google Scholar 

  34. A. V. Krivandin, O. V. Shatalova, and A. L. Iordanskii, Vysokomol. Soedin., Ser. B 39, 102 (1997).

    Google Scholar 

  35. E. L. Ivantsova, R. Yu. Kosenko, A. L. Iordanskii, S. Z. Rogovina, E. V. Prut, A. G. Filatova, K. Z. Gumargalieva, S. P. Novikova, and A. A. Berlin, Polym. Sci., Ser. A 54 (2), 139 (2012).

    Article  Google Scholar 

  36. S. A. Reitlinger, Permeability of Polymer Materials (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  37. A. A. Ol’khov, C. V. Vlasov, L. S. Shibryaeva, I. A. Litvinov, N. A. Tarasova, R. Yu. Kosenko, and A. L. Iordanskii, Polym. Sci., Ser. A 42 (4), 447 (2000).

    Google Scholar 

  38. A. L. Iordanskii and P. P. Kamaev, Vysokomol. Soedin. 41 (2), 374 (1999).

    CAS  Google Scholar 

  39. E. L. Ivantsova, A. L. Iordanskii, R. Yu. Kosenko, S. Z. Rogovina, A. V. Grachev, and E. V. Prut, Pharm. Chem. J. 45, 51 (2011).

    Article  CAS  Google Scholar 

  40. P. Lai, W. Daear, and E. J. Lobenberg, Colloids Surf., B 118, 154 (2014).

    Article  CAS  Google Scholar 

  41. Y. Su, X. Li, Y. Liu, Q. Su, M. L. W. Qiang, and X. Mo, J. Biomater. Sci., Polym. Ed. 22 (1–3), 165 (2011).

    Article  CAS  Google Scholar 

  42. C. Wang, S.-N. Tong, Y.-H. Tse, and M. Wang, Adv. Mater. Res. 410, 118 (2012).

    Article  CAS  Google Scholar 

  43. A. R. C. Duarte, J. F. Mano, and R. L. Rei, J. Supercrit. Fluids 54, 282 (2010).

    Article  CAS  Google Scholar 

  44. A. Wei, J. Wang, X. Wang, Q. Wie, M. Ge, and D. Hou, J. Appl. Polym. Sci. 118 (1), 346 (2010).

    Article  CAS  Google Scholar 

  45. A. Steinbüchel, in Biomaterials. Novel Materials from Biological Sources, Ed. by D. Macmillan (Byrom, Stockton; New York, 1991).

    Google Scholar 

  46. S. Muhammad, A. Muhammad, and H. Shafqat, Green Chem. Lett. Rev. 8 (3–4), 56 (2015).

    Article  Google Scholar 

  47. C. T. Huynh, S. W. Kang, Y. Li, B. S. Kim, and D. S. Lee, Soft Matter 7, 8984 (2011).

    Article  CAS  Google Scholar 

  48. C. Hu, S. Liu, Y. Zhang, B. Li, H. Yang, C. Fan, and W. Cui, Acta Biomater. 9 (7), 738 (2013).

    Article  Google Scholar 

  49. A. Sharma, A. Gupta, G. Rath, A. Goyal, R. B. Mathur, and S. R. Dhakate, J. Mater. Chem. B 2013 (1), 1039 (2013).

    Google Scholar 

  50. P. Keshavarz, S. Ayatollahi, and J. Fathikalajahi, J. Membr. Sci. 325 (1), 98 (2008).

    Article  CAS  Google Scholar 

  51. H. B. Hopfenberg, in Controlled Release Polymeric Formulations, Ed. by D. R. Paul and F. W. Harris (American Chem. Soc., Washington, DC, 1976), p. 26.

    Book  Google Scholar 

  52. Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, Mater. Des. 47, 424 (2013).

    Article  CAS  Google Scholar 

  53. A. L. Iordanskii, S. Z. Rogovina, R. Yu. Kosenko, E. L. Ivantsova, and E. V. Prut, Dokl. Phys. Chem. 431 (2), 60 (2010).

    Article  CAS  Google Scholar 

  54. J. S. Mackie and P. Meares, Proc. R. Soc. A 232 (1191), 498 (1995).

    Article  Google Scholar 

  55. A. V. Bychkova, AL. Iordanskii, A. L. Kovarski, O. N. Sorokina, R. Yu. Kosenko, V. S. Markin, A. G. Filatova, K. Z. Gumargalieva, S. Z. Rogovina, and A. A. Berlin, Nanotechnol. Russ. 10 (3–4), 325 (2015).

    Article  CAS  Google Scholar 

  56. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1992).

    Google Scholar 

  57. A. E. Chalykh, Water Diffusion in Polymer Systems (Khimiya, Moscow, 1987) [in Russian].

    Google Scholar 

  58. B. Jämstorr, Acta Univ. Ups. Abstr. Uppsala Diss. Fac. Sci. Technol., No. 884 (2016).

    Google Scholar 

  59. A. P. Bonartsev, V. A. Livshits, T. A. Makhina, V. L. Myshkina, G. A. Bonartseva, and A. L. Iordanskii, eXPRESS Polym. Lett. 1 (12), 797 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Kucherenko.

Additional information

Original Russian Text © A.L. Iordanskii, A.A. Ol’khov, S.G. Karpova, E.L. Kucherenko, R.Yu. Kosenko, S.Z. Rogovina, A.E. Chalykh, A.A. Berlin, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2017, Vol. 59, No. 3, pp. 273–284.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iordanskii, A.L., Ol’khov, A.A., Karpova, S.G. et al. Influence of the structure and morphology of ultrathin poly(3-hydroxybutyrate) fibers on the diffusion kinetics and transport of drugs. Polym. Sci. Ser. A 59, 352–362 (2017). https://doi.org/10.1134/S0965545X17030075

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17030075

Navigation